1
|
Yu Y, Jin B, Jia R, Shi L, Chen Y, Ge J, Xu C. Exosomes loaded with the anti-cancer molecule mir-1-3p inhibit intrapulmonary colonization and growth of human esophageal squamous carcinoma cells. J Transl Med 2024; 22:1166. [PMID: 39741298 DOI: 10.1186/s12967-024-05997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND The overall prognosis of patients with esophageal cancer (EC) is extremely poor. There is an urgent need to develop innovative therapeutic strategies. This study will investigate the anti-cancer effects of exosomes loaded with specific anti-cancer microRNAs in vivo and in vitro. METHODS Specific miRNAs that were significantly down-regulated in EC tissues were screened using the miRNAs profiling data of human EC tissue samples in TCGA, and the role of their exogenous expression in the proliferation and migration of human EC cell lines, KYSE150 and Eca109, were detected using CCK-8 and Transwell assays. Exosomes were loaded with miRNAs using electroporation. RESULTS The expression of miR-1-3p was significantly down-regulated in human EC tissues with potential anti-cancer effects. Exosomes loaded with miR-1-3p significantly inhibited the proliferation, migration and invasion of KYSE150 and Eca109 cells in vitro, as well as the intrapulmonary colonization and growth of KYSE150 cells in vivo. In addition, miR-1-3p could directly bind to the 3'UTR of the transcription factor E2F5 mRNA, down-regulate the protein expression of E2F5, and inhibit the activation of the MAPK/ERK signaling pathway. CONCLUSION Exosomes loaded with miR-1-3p may be applicable to the treatment of EC.
Collapse
Affiliation(s)
- Yanmei Yu
- Ultrasonography Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Bingjie Jin
- Gastroenterology Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324 JingwuWeiqi Road, Jinan, Shandong, 250021, China
| | - Ruzhen Jia
- Gastroenterology Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324 JingwuWeiqi Road, Jinan, Shandong, 250021, China
| | - Lei Shi
- Gastroenterology Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324 JingwuWeiqi Road, Jinan, Shandong, 250021, China
| | - Yong Chen
- Gastroenterology Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324 JingwuWeiqi Road, Jinan, Shandong, 250021, China
| | - Jian Ge
- Gastroenterology Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324 JingwuWeiqi Road, Jinan, Shandong, 250021, China
| | - Changqin Xu
- Gastroenterology Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324 JingwuWeiqi Road, Jinan, Shandong, 250021, China.
| |
Collapse
|
2
|
Gatti CR, Schibert F, Taylor VS, Capobianco E, Montero V, Higa R, Jawerbaum A. Maternal dietary olive oil protects diabetic rat offspring from impaired uterine decidualization. Placenta 2024:S0143-4004(24)00776-8. [PMID: 39609224 DOI: 10.1016/j.placenta.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
INTRODUCTION Maternal diabetes increases the risk of adverse maternal, perinatal and offspring outcomes. This study aimed to address whether alterations in uterine decidualization are programmed in the prepubertal offspring from diabetic rats fed diets enriched or not in extra virgin olive oil (EVOO). METHODS Control and mild pregestational diabetic female rats (F0) were mated with control males and fed diets enriched or not with 6 % EVOO during pregnancy. Offspring (F1) were evaluated on postnatal day 30, after induction of uterine decidualization (PMSG 50 IU- hCG 50 IU). Signaling pathways involved in decidualization, including prolactin, PPAR and mTOR pathways as well as microRNAs (miRs) regulating these pathways were evaluated by Western blot or qPCR in the decidualized uteri. RESULTS The offspring from diabetic rats evidenced reduced prolactin and prolactin receptor levels in the decidualized uteri. Additionally, these tissues showed increased PPARγ levels and reduced levels of its negative regulators miR-19b and miR-155. MiR-21, a microRNA that targets both PPARα and mTOR pathway regulators was reduced, whereas PPARα, PTEN and FOXO1 mRNA levels were increased in the decidualized uteri of the offspring from diabetic rats. The mTOR pathway activity was reduced in the decidualized uteri of the offspring from diabetic rats. Most of the observed alterations were prevented by the EVOO-enriched maternal diet. DISCUSSION Impaired pathways relevant to decidualization are programmed in the uteri of prepubertal offspring from diabetic dams, alterations capable of being prevented by maternal diets enriched in EVOO.
Collapse
Affiliation(s)
- Cintia Romina Gatti
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | - Florencia Schibert
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | - Virginia Soledad Taylor
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | - Evangelina Capobianco
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | | | - Romina Higa
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Hachem S, Yehya A, El Masri J, Mavingire N, Johnson JR, Dwead AM, Kattour N, Bouchi Y, Kobeissy F, Rais-Bahrami S, Mechref Y, Abou-Kheir W, Woods-Burnham L. Contemporary Update on Clinical and Experimental Prostate Cancer Biomarkers: A Multi-Omics-Focused Approach to Detection and Risk Stratification. BIOLOGY 2024; 13:762. [PMID: 39452071 PMCID: PMC11504278 DOI: 10.3390/biology13100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
Prostate cancer remains a significant health challenge, being the most prevalent non-cutaneous cancer in men worldwide. This review discusses the critical advancements in biomarker discovery using single-omics and multi-omics approaches. Multi-omics, integrating genomic, transcriptomic, proteomic, metabolomic, and epigenomic data, offers a comprehensive understanding of the molecular heterogeneity of prostate cancer, leading to the identification of novel biomarkers and therapeutic targets. This holistic approach not only enhances the specificity and sensitivity of prostate cancer detection but also supports the development of personalized treatment strategies. Key studies highlighted include the identification of novel genes, genetic mutations, peptides, metabolites, and potential biomarkers through multi-omics analyses, which have shown promise in improving prostate cancer management. The integration of multi-omics in clinical practice can potentially revolutionize prostate cancer prognosis and treatment, paving the way for precision medicine. This review underscores the importance of continued research and the application of multi-omics to overcome current challenges in prostate cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Sana Hachem
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon (A.Y.)
| | - Amani Yehya
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon (A.Y.)
| | - Jad El Masri
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon (A.Y.)
| | - Nicole Mavingire
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA; (N.M.)
| | - Jabril R. Johnson
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Abdulrahman M. Dwead
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA; (N.M.)
| | - Naim Kattour
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon (A.Y.)
| | - Yazan Bouchi
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Firas Kobeissy
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Soroush Rais-Bahrami
- Department of Urology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Radiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon (A.Y.)
| | - Leanne Woods-Burnham
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA; (N.M.)
| |
Collapse
|
4
|
Zhou T, Nguyen S, Wu J, He B, Feng Q. LncRNA LOC730101 Promotes Darolutamide Resistance in Prostate Cancer by Suppressing miR-1-3p. Cancers (Basel) 2024; 16:2594. [PMID: 39061232 PMCID: PMC11274508 DOI: 10.3390/cancers16142594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antiandrogen is part of the standard-of-care treatment option for metastatic prostate cancer. However, prostate cancers frequently relapse, and the underlying resistance mechanism remains incompletely understood. This study seeks to investigate whether long non-coding RNAs (lncRNAs) contribute to the resistance against the latest antiandrogen drug, darolutamide. Our RNA sequencing analysis revealed significant overexpression of LOC730101 in darolutamide-resistant cancer cells compared to the parental cells. Elevated LOC730101 levels were also observed in clinical samples of metastatic castration-resistant prostate cancer (CRPC) compared to primary prostate cancer samples. Silencing LOC730101 with siRNA significantly impaired the growth of darolutamide-resistant cells. Additional RNA sequencing analysis identified a set of genes regulated by LOC730101, including key players in the cell cycle regulatory pathway. We further demonstrated that LOC730101 promotes darolutamide resistance by competitively inhibiting microRNA miR-1-3p. Moreover, by Hi-C sequencing, we found that LOC730101 is located in a topologically associating domain (TAD) that undergoes specific gene induction in darolutamide-resistant cells. Collectively, our study demonstrates the crucial role of the lncRNA LOC730101 in darolutamide resistance and its potential as a target for overcoming antiandrogen resistance in CRPC.
Collapse
Affiliation(s)
- Tianyi Zhou
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Steven Nguyen
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Jacky Wu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Bin He
- Immunobiology & Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Medicine-Cancer Biology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Qin Feng
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
5
|
Dai S, Li F, Xu S, Hu J, Gao L. The important role of miR-1-3p in cancers. J Transl Med 2023; 21:769. [PMID: 37907984 PMCID: PMC10617136 DOI: 10.1186/s12967-023-04649-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer is a malignant tumor that seriously threatens human life and health. At present, the main treatment methods include surgical resection, chemotherapy, radiotherapy, and immunotherapy. However, the mechanism of tumor occurrence and development is complex, and it produces resistance to some traditional treatment methods, leading to treatment failure and a high mortality rate for patients. Therefore, exploring the molecular mechanisms of tumor occurrence, development, and drug resistance is a very important task. MiRNAs are a type of non-coding small RNA that regulate a series of biological effects by binding to the 3'-UTR of the target mRNA, degrading the mRNA, or inhibiting its translation. MiR-1-3p is an important member of them, which is abnormally expressed in various tumors and closely related to the occurrence and development of tumors. This article introduces miR-1-3p from multiple aspects, including its production and regulation, role in tumor occurrence and development, clinical significance, role in drug resistance, and approaches for targeting miR-1-3p. Intended to provide readers with a comprehensive understanding of the important role of miR-1-3p in tumors.
Collapse
Affiliation(s)
- Shangming Dai
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Fengjiao Li
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuoguo Xu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Jinda Hu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Lichen Gao
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China.
| |
Collapse
|