1
|
Larose M, Archambault L, Touma N, Brodeur R, Desroches F, Raymond N, Bédard-Tremblay D, LeBlanc D, Rasekh F, Hovington H, Neveu B, Vallières M, Pouliot F. Multi-task Bayesian model combining FDG-PET/CT imaging and clinical data for interpretable high-grade prostate cancer prognosis. Sci Rep 2024; 14:26928. [PMID: 39505979 PMCID: PMC11541986 DOI: 10.1038/s41598-024-77498-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
We propose a fully automatic multi-task Bayesian model, named Bayesian Sequential Network (BSN), for predicting high-grade (Gleason ≥ 8) prostate cancer (PCa) prognosis using pre-prostatectomy FDG-PET/CT images and clinical data. BSN performs one classification task and five survival tasks: predicting lymph node invasion (LNI), biochemical recurrence-free survival (BCR-FS), metastasis-free survival, definitive androgen deprivation therapy-free survival, castration-resistant PCa-free survival, and PCa-specific survival (PCSS). Experiments are conducted using a dataset of 295 patients. BSN outperforms widely used nomograms on all tasks except PCSS, leveraging multi-task learning and imaging data. BSN also provides automated prostate segmentation, uncertainty quantification, personalized feature-based explanations, and introduces dynamic predictions, a novel approach that relies on short-term outcomes to refine long-term prognosis. Overall, BSN shows great promise in its ability to exploit imaging and clinicopathological data to predict poor outcome patients that need treatment intensification with loco-regional or systemic adjuvant therapy for high-risk PCa.
Collapse
Affiliation(s)
- Maxence Larose
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, QC, Canada.
- CHU de Québec - Université Laval et CRCHU de Québec, Québec, QC, Canada.
| | - Louis Archambault
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, QC, Canada.
- CHU de Québec - Université Laval et CRCHU de Québec, Québec, QC, Canada.
| | - Nawar Touma
- CHU de Québec - Université Laval et CRCHU de Québec, Québec, QC, Canada
| | - Raphaël Brodeur
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, QC, Canada
- CHU de Québec - Université Laval et CRCHU de Québec, Québec, QC, Canada
| | - Félix Desroches
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, QC, Canada
- CHU de Québec - Université Laval et CRCHU de Québec, Québec, QC, Canada
| | - Nicolas Raymond
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Danahé LeBlanc
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, QC, Canada
- CHU de Québec - Université Laval et CRCHU de Québec, Québec, QC, Canada
| | - Fatemeh Rasekh
- CHU de Québec - Université Laval et CRCHU de Québec, Québec, QC, Canada
| | - Hélène Hovington
- CHU de Québec - Université Laval et CRCHU de Québec, Québec, QC, Canada
| | - Bertrand Neveu
- CHU de Québec - Université Laval et CRCHU de Québec, Québec, QC, Canada
| | - Martin Vallières
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Frédéric Pouliot
- CHU de Québec - Université Laval et CRCHU de Québec, Québec, QC, Canada.
| |
Collapse
|
2
|
Leung VWS, Ng CKC, Lam SK, Wong PT, Ng KY, Tam CH, Lee TC, Chow KC, Chow YK, Tam VCW, Lee SWY, Lim FMY, Wu JQ, Cai J. Computed Tomography-Based Radiomics for Long-Term Prognostication of High-Risk Localized Prostate Cancer Patients Received Whole Pelvic Radiotherapy. J Pers Med 2023; 13:1643. [PMID: 38138870 PMCID: PMC10744672 DOI: 10.3390/jpm13121643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Given the high death rate caused by high-risk prostate cancer (PCa) (>40%) and the reliability issues associated with traditional prognostic markers, the purpose of this study is to investigate planning computed tomography (pCT)-based radiomics for the long-term prognostication of high-risk localized PCa patients who received whole pelvic radiotherapy (WPRT). This is a retrospective study with methods based on best practice procedures for radiomics research. Sixty-four patients were selected and randomly assigned to training (n = 45) and testing (n = 19) cohorts for radiomics model development with five major steps: pCT image acquisition using a Philips Big Bore CT simulator; multiple manual segmentations of clinical target volume for the prostate (CTVprostate) on the pCT images; feature extraction from the CTVprostate using PyRadiomics; feature selection for overfitting avoidance; and model development with three-fold cross-validation. The radiomics model and signature performances were evaluated based on the area under the receiver operating characteristic curve (AUC) as well as accuracy, sensitivity and specificity. This study's results show that our pCT-based radiomics model was able to predict the six-year progression-free survival of the high-risk localized PCa patients who received the WPRT with highly consistent performances (mean AUC: 0.76 (training) and 0.71 (testing)). These are comparable to findings of other similar studies including those using magnetic resonance imaging (MRI)-based radiomics. The accuracy, sensitivity and specificity of our radiomics signature that consisted of two texture features were 0.778, 0.833 and 0.556 (training) and 0.842, 0.867 and 0.750 (testing), respectively. Since CT is more readily available than MRI and is the standard-of-care modality for PCa WPRT planning, pCT-based radiomics could be used as a routine non-invasive approach to the prognostic prediction of WPRT treatment outcomes in high-risk localized PCa.
Collapse
Affiliation(s)
- Vincent W. S. Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Curtise K. C. Ng
- Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA 6845, Australia;
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Sai-Kit Lam
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Po-Tsz Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Ka-Yan Ng
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Cheuk-Hong Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Tsz-Ching Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Kin-Chun Chow
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Yan-Kate Chow
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Victor C. W. Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Shara W. Y. Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| | - Fiona M. Y. Lim
- Department of Oncology, Princess Margaret Hospital, Hong Kong SAR, China;
| | - Jackie Q. Wu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27708, USA;
| | - Jing Cai
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (P.-T.W.); (V.C.W.T.); (S.W.Y.L.); (J.C.)
| |
Collapse
|
3
|
Tang FH, Fong YW, Yung SH, Wong CK, Tu CL, Chan MT. Radiomics-Clinical AI Model with Probability Weighted Strategy for Prognosis Prediction in Non-Small Cell Lung Cancer. Biomedicines 2023; 11:2093. [PMID: 37626590 PMCID: PMC10452490 DOI: 10.3390/biomedicines11082093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, we propose a radiomics clinical probability-weighted model for the prediction of prognosis for non-small cell lung cancer (NSCLC). The model combines radiomics features extracted from radiotherapy (RT) planning images with clinical factors such as age, gender, histology, and tumor stage. CT images with radiotherapy structures of 422 NSCLC patients were retrieved from The Cancer Imaging Archive (TCIA). Radiomic features were extracted from gross tumor volumes (GTVs). Five machine learning algorithms, namely decision trees (DT), random forests (RF), extreme boost (EB), support vector machine (SVM) and generalized linear model (GLM) were optimized by a voted ensemble machine learning (VEML) model. A probabilistic weighted approach is used to incorporate the uncertainty associated with both radiomic and clinical features and to generate a probabilistic risk score for each patient. The performance of the model is evaluated using a receiver operating characteristic (ROC). The Radiomic model, clinical factor model, and combined radiomic clinical probability-weighted model demonstrated good performance in predicting NSCLC survival with AUC of 0.941, 0.856 and 0.949, respectively. The combined radiomics clinical probability-weighted enhanced model achieved significantly better performance than the radiomic model in 1-year survival prediction (chi-square test, p < 0.05). The proposed model has the potential to improve NSCLC prognosis and facilitate personalized treatment decisions.
Collapse
Affiliation(s)
- Fuk-Hay Tang
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | | | | | | | | | | |
Collapse
|