1
|
Hushmandi K, Farahani N, Einollahi B, Salimimoghadam S, Alimohammadi M, Liang L, Liu L, Sethi G. Deciphering molecular pathways in urological cancers: a gateway to precision therapeutics. J Adv Res 2025:S2090-1232(25)00395-9. [PMID: 40516913 DOI: 10.1016/j.jare.2025.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 06/02/2025] [Accepted: 06/05/2025] [Indexed: 06/16/2025] Open
Abstract
BACKGROUND Urological cancers, including prostate, kidney, bladder, testicular, and penile cancers, pose a significant health challenge, particularly in their metastatic stages. Surgical interventions remain fundamental, but recent advancements in medical therapies like chemotherapy, immunotherapy, and targeted therapies have shown promise in improving patient outcomes. AIM OF REVIEW This review aims to explore the current landscape of targeted therapies in urological cancers, focusing on the role of key signaling pathways such as phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), mechanistic (mammalian) target of rapamycin (mTOR), growth factor-related mechanisms, c-Mesenchymal-epithelial transition factor (c-Met)/ hepatocyte growth factor (HGF), programmed cell death protein 1 and its ligand programmed death-ligand 1 (PD-1/PD-L1), and steroid hormone receptor pathways in tumor progression and therapeutic resistance. Key scientific concepts of review Dysregulation of pathways like PI3K/Akt and mTOR contributes to tumorigenesis, metastasis, and resistance to treatment, underscoring their relevance as therapeutic targets. Tyrosine kinase inhibitors and immune checkpoint inhibitors have demonstrated efficacy but face challenges such as intrinsic resistance and treatment-related toxicities. Integrating insights from signaling pathway research with clinical practice holds potential for developing more effective treatment paradigms, enhancing the efficacy of targeted therapies, and improving survival rates for patients with urological cancers.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran,Iran
| | - Liping Liang
- Guangzhou Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Le Liu
- Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore 117600 Singapore, Singapore.
| |
Collapse
|
2
|
Wang C, Zhang Q, Li Q, Wang Y, Chen X. From infection to tumor: genetic evidence of viral antibody immune response' role in urologic cancer development. Discov Oncol 2025; 16:947. [PMID: 40442531 PMCID: PMC12122962 DOI: 10.1007/s12672-025-02768-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 05/21/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND Urologic tumors are among the most common malignancies worldwide, and the association between chronic infections and the risk of developing these tumors has garnered significant attention. However, traditional observational studies are prone to confounding factors, making it challenging to establish a clear causal relationship. METHOD This study employs a two-sample bidirectional Mendelian randomization analysis, utilizing genetic data on antibody levels and urologic tumors obtained from GWAS databases. The inverse variance weighted (IVW) method was used to estimate causal relationships, while MR-Egger and MR-PRESSO methods were applied for sensitivity analyses to assess horizontal pleiotropy and heterogeneity. RESULT The results showed that antibody levels associated with various viral infections were significantly correlated with the risk of developing urologic tumors. For example, antibodies related to cytomegalovirus IgG and Epstein-Barr virus (EBV) were found to have complex associations with the risk of prostate cancer, bladder cancer, and testicular cancer. Some antibodies, such as those related to Varicella zoster virus, were associated with a reduced risk of clear cell renal carcinoma. Additionally, sensitivity analyses suggested the potential presence of horizontal pleiotropy in bladder and testicular cancers. CONCLUSION Through Mendelian randomization analysis, we revealed a potential causal relationship between antibody immune responses and urologic tumors. These findings provide new evidence for the role of chronic infections in the pathogenesis of urologic tumors, suggesting that prevention and treatment strategies targeting related pathogens, such as vaccination and antiviral therapies, could offer new avenues for the prevention and management of urologic cancers.
Collapse
Affiliation(s)
- Chen Wang
- Department of Urology, Nanxiang Branch of Ruijin Hospital, Shanghai, China
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qifa Zhang
- Department of Urology, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Qiang Li
- Department of Urology, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Yelong Wang
- Department of Urology, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Xin Chen
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
3
|
Xu Y, Zhang G, Liu Y, Liu Y, Tian A, Che J, Zhang Z. Molecular mechanisms and targeted therapy for the metastasis of prostate cancer to the bones (Review). Int J Oncol 2024; 65:104. [PMID: 39301646 PMCID: PMC11419411 DOI: 10.3892/ijo.2024.5692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024] Open
Abstract
The incidence of prostate cancer (PCa) is increasing, making it one of the prevalent malignancies among men. Metastasis of PCa to the bones poses the greatest danger to patients, potentially resulting in treatment ineffectiveness and mortality. At present, the management of patients with bone metastasis focuses primarily on providing palliative care. Research has indicated that the spread of PCa to the bones occurs through the participation of numerous molecules and their respective pathways. Gaining knowledge regarding the molecular processes involved in bone metastasis may result in the development of innovative and well‑tolerated therapies, ultimately enhancing the quality of life and prognosis of patients. The present article provides the latest overview of the molecular mechanisms involved in the formation of bone metastatic tumors from PCa. Additionally, the clinical outcomes of targeted drug therapies for bone metastasis are thoroughly analyzed. Finally, the benefits and difficulties of targeted therapy for bone metastasis of PCa are discussed, aiming to offer fresh perspectives for treatment.
Collapse
Affiliation(s)
- Yankai Xu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Gang Zhang
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Yuanyuan Liu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Yangyang Liu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Aimin Tian
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Jizhong Che
- Correspondence to: Professor Zhengchao Zhang or Professor Jizhong Che, Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, 717, Jinbu Street, Muping, Yantai, Shandong 264100, P.R. China, E-mail: , E-mail:
| | - Zhengchao Zhang
- Correspondence to: Professor Zhengchao Zhang or Professor Jizhong Che, Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, 717, Jinbu Street, Muping, Yantai, Shandong 264100, P.R. China, E-mail: , E-mail:
| |
Collapse
|
4
|
Glaviano A, Wander SA, Baird RD, Yap KCH, Lam HY, Toi M, Carbone D, Geoerger B, Serra V, Jones RH, Ngeow J, Toska E, Stebbing J, Crasta K, Finn RS, Diana P, Vuina K, de Bruin RAM, Surana U, Bardia A, Kumar AP. Mechanisms of sensitivity and resistance to CDK4/CDK6 inhibitors in hormone receptor-positive breast cancer treatment. Drug Resist Updat 2024; 76:101103. [PMID: 38943828 DOI: 10.1016/j.drup.2024.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
Cell cycle dysregulation is a hallmark of cancer that promotes eccessive cell division. Cyclin-dependent kinase 4 (CDK4) and cyclin-dependent kinase 6 (CDK6) are key molecules in the G1-to-S phase cell cycle transition and are crucial for the onset, survival, and progression of breast cancer (BC). Small-molecule CDK4/CDK6 inhibitors (CDK4/6i) block phosphorylation of tumor suppressor Rb and thus restrain susceptible BC cells in G1 phase. Three CDK4/6i are approved for the first-line treatment of patients with advanced/metastatic hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) BC in combination with endocrine therapy (ET). Though this has improved the clinical outcomes for survival of BC patients, there is no established standard next-line treatment to tackle drug resistance. Recent studies suggest that CDK4/6i can modulate other distinct effects in both BC and breast stromal compartments, which may provide new insights into aspects of their clinical activity. This review describes the biochemistry of the CDK4/6-Rb-E2F pathway in HR+ BC, then discusses how CDK4/6i can trigger other effects in BC/breast stromal compartments, and finally outlines the mechanisms of CDK4/6i resistance that have emerged in recent preclinical studies and clinical cohorts, emphasizing the impact of these findings on novel therapeutic opportunities in BC.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90123, Italy
| | - Seth A Wander
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard D Baird
- Cancer Research UK Cambridge Centre, Hills Road, Cambridge CB2 0QQ, UK
| | - Kenneth C-H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Masakazu Toi
- School of Medicine, Kyoto University, Kyoto, Japan
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90123, Italy
| | - Birgit Geoerger
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Inserm U1015, Université Paris-Saclay, Villejuif, France
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Robert H Jones
- Cardiff University and Velindre Cancer Centre, Museum Avenue, Cardiff CF10 3AX, UK
| | - Joanne Ngeow
- Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Experimental Medicine Building, 636921, Singapore; Cancer Genetics Service (CGS), National Cancer Centre Singapore, 168583, Singapore
| | - Eneda Toska
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Justin Stebbing
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK; Division of Cancer, Imperial College London, Hammersmith Campus, London, UK
| | - Karen Crasta
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore; Healthy Longetivity Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
| | - Richard S Finn
- Department of Oncology, Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90123, Italy
| | - Karla Vuina
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Uttam Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; SiNOPSEE Therapeutics Pte Ltd, A⁎STARTCentral, 139955, Singapore
| | - Aditya Bardia
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
5
|
Jiang A, Li J, He Z, Liu Y, Qiao K, Fang Y, Qu L, Luo P, Lin A, Wang L. Renal cancer: signaling pathways and advances in targeted therapies. MedComm (Beijing) 2024; 5:e676. [PMID: 39092291 PMCID: PMC11292401 DOI: 10.1002/mco2.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Renal cancer is a highlyheterogeneous malignancy characterized by rising global incidence and mortalityrates. The complex interplay and dysregulation of multiple signaling pathways,including von Hippel-Lindau (VHL)/hypoxia-inducible factor (HIF), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), Hippo-yes-associated protein (YAP), Wnt/ß-catenin, cyclic adenosine monophosphate (cAMP), and hepatocyte growth factor (HGF)/c-Met, contribute to theinitiation and progression of renal cancer. Although surgical resection is thestandard treatment for localized renal cancer, recurrence and metastasiscontinue to pose significant challenges. Advanced renal cancer is associatedwith a poor prognosis, and current therapies, such as targeted agents andimmunotherapies, have limitations. This review presents a comprehensiveoverview of the molecular mechanisms underlying aberrant signaling pathways inrenal cancer, emphasizing their intricate crosstalk and synergisticinteractions. We discuss recent advancements in targeted therapies, includingtyrosine kinase inhibitors, and immunotherapies, such as checkpoint inhibitors.Moreover, we underscore the importance of multiomics approaches and networkanalysis in elucidating the complex regulatory networks governing renal cancerpathogenesis. By integrating cutting-edge research and clinical insights, this review contributesto the development of innovative diagnostic and therapeutic strategies, whichhave the potential to improve risk stratification, precision medicine, andultimately, patient outcomes in renal cancer.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Jinxin Li
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Ziwei He
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Ying Liu
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Kun Qiao
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Yu Fang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Le Qu
- Department of UrologyJinling HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Peng Luo
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Anqi Lin
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Linhui Wang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
6
|
Zhou SR, Zhu YS, Yuan WT, Pan XY, Wang T, Chen XD. Hepatocyte growth factor promotes retinal pigment epithelium cell activity through MET/AKT signaling pathway. Int J Ophthalmol 2024; 17:806-814. [PMID: 38766346 PMCID: PMC11074208 DOI: 10.18240/ijo.2024.05.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/30/2024] [Indexed: 05/22/2024] Open
Abstract
AIM To explore the effects of hepatocyte growth factor (HGF) on retinal pigment epithelium (RPE) cell behaviors. METHODS The human adult retinal pigment epithelial cell line-19 (ARPE-19) were treated by HGF or mesenchymal-epithelial transition factor (MET) inhibitor SU11274 in vitro. Cell viability was detected by a Cell Counting Kit-8 assay. Cell proliferation and motility was detected by a bromodeoxyuridine incorporation assay and a wound healing assay, respectively. The expression levels of MET, phosphorylated MET, protein kinase B (AKT), and phosphorylated AKT proteins were determined by Western blot assay. The MET and phosphorylated MET proteins were also determined by immunofluorescence assay. RESULTS HGF increased ARPE-19 cells' viability, proliferation and migration, and induced an increase of phosphorylated MET and phosphorylated AKT proteins. SU11274 significantly reduced cell viability, proliferation, and migration and decreased the expression of MET and AKT proteins. SU11274 suppressed HGF-induced increase of viability, proliferation, and migration in ARPE-19 cells. Additionally, SU11274 also blocked HGF-induced phosphorylation of MET and AKT proteins. CONCLUSION HGF enhances cellular viability, proliferation, and migration in RPE cells through the MET/AKT signaling pathway, whereas this enhancement is suppressed by the MET inhibitor SU11274. HGF-induced MET/AKT signaling might be a vital contributor of RPE cells survival.
Collapse
Affiliation(s)
- Si-Rui Zhou
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an 710002, Shaanxi Province, China
| | - Yu-Sheng Zhu
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an 710002, Shaanxi Province, China
| | - Wen-Ting Yuan
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an 710002, Shaanxi Province, China
| | - Xiao-Yan Pan
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an 710002, Shaanxi Province, China
| | - Tong Wang
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an 710002, Shaanxi Province, China
| | - Xiao-Dong Chen
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an 710002, Shaanxi Province, China
| |
Collapse
|
7
|
Yin Z, Liu B, Feng S, He Y, Tang C, Chen P, Wang X, Wang K. A Large Genetic Causal Analysis of the Gut Microbiota and Urological Cancers: A Bidirectional Mendelian Randomization Study. Nutrients 2023; 15:4086. [PMID: 37764869 PMCID: PMC10537765 DOI: 10.3390/nu15184086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Several observational studies and clinical trials have shown that the gut microbiota is associated with urological cancers. However, the causal relationship between gut microbiota and urological cancers remains to be elucidated due to many confounding factors. METHODS In this study, we used two thresholds to identify gut microbiota GWAS from the MiBioGen consortium and obtained data for five urological cancers from the UK biobank and Finngen consortium, respectively. We then performed a two-sample Mendelian randomization (MR) analysis with Wald ratio or inverse variance weighted as the main method. We also performed comprehensive sensitivity analyses to verify the robustness of the results. In addition, we performed a reverse MR analysis to examine the direction of causality. RESULTS Our study found that family Rikenellaceae, genus Allisonella, genus Lachnospiraceae UCG001, genus Oscillibacter, genus Eubacterium coprostanoligenes group, genus Eubacterium ruminantium group, genus Ruminococcaceae UCG013, and genus Senegalimassilia were related to bladder cancer; genus Ruminococcus torques group, genus Oscillibacter, genus Barnesiella, genus Butyricicoccus, and genus Ruminococcaceae UCG005 were related to prostate cancer; class Alphaproteobacteria, class Bacilli, family Family XI, genus Coprococcus2, genus Intestinimonas, genus Lachnoclostridium, genus Lactococcus, genus Ruminococcus torques group, and genus Eubacterium brachy group were related to renal cell cancer; family Clostridiaceae 1, family Christensenellaceae, genus Eubacterium coprostanoligenes group, genus Clostridium sensu stricto 1, and genus Eubacterium eligens group were related to renal pelvis cancer; family Peptostreptococcaceae, genus Romboutsia, and genus Subdoligranulum were related to testicular cancer. Comprehensive sensitivity analyses proved that our results were reliable. CONCLUSIONS Our study confirms the role of specific gut microbial taxa on urological cancers, explores the mechanism of gut microbiota on urological cancers from a macroscopic level, provides potential targets for the screening and treatment of urological cancers, and is dedicated to providing new ideas for clinical research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, China; (Z.Y.); (S.F.); (Y.H.); (C.T.); (P.C.)
| |
Collapse
|
8
|
Alamshany ZM, Algamdi EM, Othman IMM, Anwar MM, Nossier ES. New pyrazolopyridine and pyrazolothiazole-based compounds as anti-proliferative agents targeting c-Met kinase inhibition: design, synthesis, biological evaluation, and computational studies. RSC Adv 2023; 13:12889-12905. [PMID: 37114032 PMCID: PMC10128108 DOI: 10.1039/d3ra01931d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
c-Met tyrosine kinase plays a key role in the oncogenic process. Inhibition of the c-Met has emerged as an attractive target for human cancer treatment. This work deals with the design and synthesis of a new set of derivatives bearing pyrazolo[3,4-b]pyridine, pyrazolo[3,4-b]thieno[3,2-e]pyridine, and pyrazolo[3,4-d]thiazole-5-thione scaffolds, 5a,b, 8a-f, and 10a,b, respectively, utilizing 3-methyl-1-tosyl-1H-pyrazol-5(4H)-one (1) as a key starting material. All the new compounds were evaluated as antiproliferative agents against HepG-2, MCF-7, and HCT-116 human cancer cell lines utilizing 5-fluorouracil and erlotinib as two standard drugs. Compounds 5a,b and 10a,b represented the most promising cytotoxic activity of IC50 values ranging from 3.42 ± 1.31 to 17.16 ± 0.37 μM. Both 5a and 5b showed the most cytotoxicity and selectivity toward HepG-2, with IC50 values of 3.42 ± 1.31 μM and 3.56 ± 1.5 μM, respectively. The enzyme assay demonstrated that 5a and 5b had inhibition potency on c-Met with IC50 values in nanomolar range of 4.27 ± 0.31 and 7.95 ± 0.17 nM, respectively in comparison with the reference drug cabozantinib (IC50; 5.38 ± 0.35 nM). The impact of 5a on the cell cycle and apoptosis induction potential in HepG-2 and on the apoptotic parameters; Bax, Bcl-2, p53, and caspase-3 was also investigated. Finally, the molecular docking simulation of the most promising derivatives 5a and 5b was screened against c-Met to investigate the binding patterns of both compounds in the active site of the c-Met enzyme. In silico ADME studies were also performed for 5a and 5b to predict their physicochemical and pharmacokinetic characteristics.
Collapse
Affiliation(s)
- Zahra M Alamshany
- Department of Chemistry, Faculty of Science, King Abdulaziz University P.O. Box 42805 Jeddah 21551 Saudi Arabia
| | - Eman M Algamdi
- Department of Chemistry, Faculty of Science, King Abdulaziz University P.O. Box 42805 Jeddah 21551 Saudi Arabia
| | - Ismail M M Othman
- Department of Chemistry, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre Dokki Cairo 12622 Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
- The National Committee of Drugs, Academy of Scientific Research and Technology Cairo 11516 Egypt
| |
Collapse
|