1
|
Hu J, Yang J, Hu N, Shi Z, Hu T, Mi B, Wang H, Chen W. Identification and Verification of Key Genes Associated with Temozolomide Resistance in Glioblastoma Based on Comprehensive Bioinformatics Analysis. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3892. [PMID: 40225293 PMCID: PMC11993235 DOI: 10.30498/ijb.2024.448826.3892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 11/26/2024] [Indexed: 04/15/2025]
Abstract
Background Glioblastoma (GBM) is the most aggressive form of brain cancer, with poor prognosis despite treatments like temozolomide (TMZ). Resistance to TMZ is a significant clinical challenge, and understanding the genes involved is crucial for developing new therapies and prognostic markers. This study aims to identify key genes associated with TMZ resistance in GBM, which could serve as valuable biomarkers for predicting patient outcomes and potential targets for treatment. Objectives This study aimed to identify genes involved in TMZ resistance in GBM and to assess the value of these genes in GBM treatment and prognosis evaluation. Materials and Methods Bioinformatics analysis of Gene Expression Omnibus (GEO) datasets (GSE113510 and GSE199689) and The Chinese Glioblastoma Genome Atlas (CGGA) database was performed to identify differentially expressed genes (DEGs) between GBM cell lines with and without TMZ resistance. Subsequently, the key modules associated with GBM patient prognosis were identified by weighted gene coexpression network analysis (WGCNA). Furthermore, hub genes related to TMZ resistance were accurately screened and confirmed using three machine learning algorithms. In addition, immune cell infiltration analysis, TF-miRNA coregulatory network analysis, drug sensitivity prediction, and gene set enrichment analysis (GSEA) were also performed for temozolomide resistance-specific genes. Finally, the expression levels of key genes were validated in our constructed TMZ-resistant cell lines by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting (WB). Results Integrated analysis of the GEO and CGGA datasets revealed 769 differentially expressed genes (DEGs), comprising 350 downregulated and 419 upregulated genes, between GBM patients and normal controls. Among these DEGs, three key genes, namely, PITX1, TNFRSF11B, and IGFBP2, exhibited significant differences in expression between groups and were prioritized via machine learning algorithms. The expression levels of these genes were found to be closely related to adverse clinical features and immune cell infiltration levels in GBM patients. These genes were also found to participate in several biological pathways and processes. RT‒qPCR and WB confirmed the differential expression of these genes in vitro, indicating that they play vital roles in GBM patients with TMZ resistance. Conclusions PITX1, TNFRSF11B, and IGFBP2 are key genes associated with the prognosis of GBM patients with TMZ resistance. The differential expression of these genes correlates with adverse outcomes in GBM patients, suggesting that they are valuable biomarkers for predicting patient prognosis and that they could serve as diagnostic biomarkers or treatment targets.
Collapse
Affiliation(s)
- Jun Hu
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jingyan Yang
- The Third Clinical School of Beijing University of Chinese Medicine, Beijing, China
| | - Na Hu
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Zongting Shi
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Tiemin Hu
- Department of Neurosurgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Baohong Mi
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- Engineering Research Center of Chinese Orthopaedics and Sports Rehabilitation Artificial Intelligent, Ministry of Education, Beijing, China
| | - Hong Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Weiheng Chen
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- Engineering Research Center of Chinese Orthopaedics and Sports Rehabilitation Artificial Intelligent, Ministry of Education, Beijing, China
| |
Collapse
|
2
|
Lin GL, Chang HH, Lin WT, Liou YS, Lai YL, Hsieh MH, Chen PK, Liao CY, Tsai CC, Wang TF, Chu SC, Kau JH, Huang HH, Hsu HL, Sun DS. Dachshund Homolog 1: Unveiling Its Potential Role in Megakaryopoiesis and Bacillus anthracis Lethal Toxin-Induced Thrombocytopenia. Int J Mol Sci 2024; 25:3102. [PMID: 38542074 PMCID: PMC10970148 DOI: 10.3390/ijms25063102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Lethal toxin (LT) is the critical virulence factor of Bacillus anthracis, the causative agent of anthrax. One common symptom observed in patients with anthrax is thrombocytopenia, which has also been observed in mice injected with LT. Our previous study demonstrated that LT induces thrombocytopenia by suppressing megakaryopoiesis, but the precise molecular mechanisms behind this phenomenon remain unknown. In this study, we utilized 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced megakaryocytic differentiation in human erythroleukemia (HEL) cells to identify genes involved in LT-induced megakaryocytic suppression. Through cDNA microarray analysis, we identified Dachshund homolog 1 (DACH1) as a gene that was upregulated upon TPA treatment but downregulated in the presence of TPA and LT, purified from the culture supernatants of B. anthracis. To investigate the function of DACH1 in megakaryocytic differentiation, we employed short hairpin RNA technology to knock down DACH1 expression in HEL cells and assessed its effect on differentiation. Our data revealed that the knockdown of DACH1 expression suppressed megakaryocytic differentiation, particularly in polyploidization. We demonstrated that one mechanism by which B. anthracis LT induces suppression of polyploidization in HEL cells is through the cleavage of MEK1/2. This cleavage results in the downregulation of the ERK signaling pathway, thereby suppressing DACH1 gene expression and inhibiting polyploidization. Additionally, we found that known megakaryopoiesis-related genes, such as FOSB, ZFP36L1, RUNX1, FLI1, AHR, and GFI1B genes may be positively regulated by DACH1. Furthermore, we observed an upregulation of DACH1 during in vitro differentiation of CD34-megakaryocytes and downregulation of DACH1 in patients with thrombocytopenia. In summary, our findings shed light on one of the molecular mechanisms behind LT-induced thrombocytopenia and unveil a previously unknown role for DACH1 in megakaryopoiesis.
Collapse
Affiliation(s)
- Guan-Ling Lin
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Hsin-Hou Chang
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Wei-Ting Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Yi-Ling Lai
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Min-Hua Hsieh
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| | - Po-Kong Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
| | - Chi-Yuan Liao
- Department of Obstetrics and Gynecology, Mennonite Christian Hospital, Hualien 97004, Taiwan; (C.-Y.L.); (C.-C.T.)
| | - Chi-Chih Tsai
- Department of Obstetrics and Gynecology, Mennonite Christian Hospital, Hualien 97004, Taiwan; (C.-Y.L.); (C.-C.T.)
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (T.-F.W.); (S.-C.C.)
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Sung-Chao Chu
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (T.-F.W.); (S.-C.C.)
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Jyh-Hwa Kau
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (J.-H.K.); (H.-H.H.); (H.-L.H.)
| | - Hsin-Hsien Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (J.-H.K.); (H.-H.H.); (H.-L.H.)
| | - Hui-Ling Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (J.-H.K.); (H.-H.H.); (H.-L.H.)
| | - Der-Shan Sun
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan; (G.-L.L.); (H.-H.C.); (P.-K.C.)
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (W.-T.L.); (Y.-S.L.); (Y.-L.L.); (M.-H.H.)
| |
Collapse
|