1
|
van der Linden LR, Vavliakis I, de Groot TM, Jutte PC, Doornberg JN, Lozano-Calderon SA, Groot OQ. Artificial Intelligence in bone Metastases: A systematic review in guideline adherence of 92 studies. J Bone Oncol 2025; 52:100682. [PMID: 40337637 PMCID: PMC12056386 DOI: 10.1016/j.jbo.2025.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 02/09/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
Background The last decade has witnessed a surge in artificial intelligence (AI). With bone metastases becoming more prevalent, there is an increasing call for personalized treatment options, a domain where AI can greatly contribute. However, integrating AI into clinical settings has proven to be difficult. Therefore, we aimed to provide an overview of AI modalities for treating bone metastases and recommend implementation-worthy models based on TRIPOD, CLAIM, and UPM scores. Methods This systematic review included 92 studies on AI models in bone metastases between 2008 and 2024. Using three assessment tools we provided a reliable foundation for recommending AI modalities fit for clinical use (TRIPOD or CLAIM ≥ 70 % and UPM score ≥ 10). Results Most models focused on survival prediction (44/92;48%), followed by imaging studies (37/92;40%). Median TRIPOD completeness was 70% (IQR 64-81%), CLAIM completeness was 57% (IQR 48-67%), and UPM score was 7 (IQR 5-9). In total, 10% (9/92) AI modalities were deemed fit for clinical use. Conclusion Transparent reporting, utilizing the aforementioned three evaluation tools, is essential for effectively integrating AI models into clinical practice, as currently, only 10% of AI models for bone metastases are deemed fit for clinical use. Such transparency ensures that both patients and clinicians can benefit from clinically useful AI models, potentially enhancing AI-driven personalized cancer treatment.
Collapse
Affiliation(s)
- Lotte R. van der Linden
- Department of Orthopaedic Surgery, University Medical Center Groningen, Groningen, the Netherlands
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Ioannis Vavliakis
- Department of Orthopaedic Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | - Tom M. de Groot
- Department of Orthopaedic Surgery, University Medical Center Groningen, Groningen, the Netherlands
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Paul C. Jutte
- Department of Orthopaedic Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | - Job N. Doornberg
- Department of Orthopaedic Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Olivier Q. Groot
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
2
|
Adugna A, Amare GA, Jemal M. Machine Learning Approach and Bioinformatics Analysis Discovered Key Genomic Signatures for Hepatitis B Virus-Associated Hepatocyte Remodeling and Hepatocellular Carcinoma. Cancer Inform 2025; 24:11769351251333847. [PMID: 40291818 PMCID: PMC12033511 DOI: 10.1177/11769351251333847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Hepatitis B virus (HBV) causes liver cancer, which is the third most common cause of cancer-related death worldwide. Chronic inflammation via HBV in the host hepatocytes causes hepatocyte remodeling (hepatocyte transformation and immortalization) and hepatocellular carcinoma (HCC). Recognizing cancer stages accurately to optimize early screening and diagnosis is a primary concern in the outlook of HBV-induced hepatocyte remodeling and liver cancer. Genomic signatures play important roles in addressing this issue. Recently, machine learning (ML) models and bioinformatics analysis have become very important in discovering novel genomic signatures for the early diagnosis, treatment, and prognosis of HBV-induced hepatic cell remodeling and HCC. We discuss the recent literature on the ML approach and bioinformatics analysis revealed novel genomic signatures for diagnosing and forecasting HBV-associated hepatocyte remodeling and HCC. Various genomic signatures, including various microRNAs and their associated genes, long noncoding RNAs (lncRNAs), and small nucleolar RNAs (snoRNAs), have been discovered to be involved in the upregulation and downregulation of HBV-HCC. Moreover, these genetic biomarkers also affect different biological processes, such as proliferation, migration, circulation, assault, dissemination, antiapoptosis, mitogenesis, transformation, and angiogenesis in HBV-infected hepatocytes.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Ethiopia
| | - Gashaw Azanaw Amare
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Ethiopia
| |
Collapse
|
3
|
Wang X, Bi Q, Deng C, Wang Y, Miao Y, Kong R, Chen J, Li C, Liu X, Gong X, Zhang Y, Bi G. Multiparametric MRI-based radiomics combined with 3D deep transfer learning to predict cervical stromal invasion in patients with endometrial carcinoma. Abdom Radiol (NY) 2025; 50:1414-1425. [PMID: 39276192 DOI: 10.1007/s00261-024-04577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/16/2024]
Abstract
OBJECTIVE To develop and compare various preoperative cervical stromal invasion (CSI) prediction models, including radiomics, three-dimensional (3D) deep transfer learning (DTL), and integrated models, using single-sequence and multiparametric MRI. METHODS Data from 466 early-stage endometrial carcinoma (EC) patients from three centers were collected. Radiomics models were constructed based on T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) mapping, contrast-enhanced T1-weighted imaging (CE-T1WI), and four combined sequences as well as 3D DTL models. Two integrated models were created using ensemble and stacking algorithms based on optimal radiomics and DTL models. Model performance and clinical benefits were assessed using area under the curve (AUC), decision curve analysis (DCA), net reclassification index (NRI), integrated discrimination index (IDI), and the Delong test for model comparisons. RESULTS Multiparametric MRI models were superior to single-sequence models for radiomics or DTL models. Ensemble and stacking integrated models displayed excellent performance. The stacking model had the highest average AUC (0.908) and accuracy (0.883) in external validation groups 1 and 2 (AUC = 0.965 and 0.851, respectively) and emerged as the best predictive model for CSI. All models significantly outperformed the radiologist (P < 0.05). In terms of net benefits, all models demonstrated favorable outcomes in DCA, NRI, and IDI, with the stacking model yielding the highest net benefit. CONCLUSION Multiparametric MRI-based radiomics combined with 3D DTL can be used to noninvasively predict CSI in EC patients with greater diagnostic accuracy than the radiologist. Stacking integrated models showed significant potential utility in predicting CSI. Which helps to provide new treatment strategy for clinicians to treat early-stage EC patients.
Collapse
Affiliation(s)
- Xianhong Wang
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of MRI, the First People's Hospital of Yunnan Province, Kunming, China
| | - Qiu Bi
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of MRI, the First People's Hospital of Yunnan Province, Kunming, China
| | - Cheng Deng
- Department of Radiology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yaoxin Wang
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yunbo Miao
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Geriatrie Medicine, the First People's Hospital of Yunnan Province, Kunming, China
| | - Ruize Kong
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Vascular Surgery, the First People's Hospital of Yunnan Province, Kunming, China
| | - Jie Chen
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chenrong Li
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of MRI, the First People's Hospital of Yunnan Province, Kunming, China
| | - Xiulan Liu
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of MRI, the First People's Hospital of Yunnan Province, Kunming, China
| | - Xiarong Gong
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of MRI, the First People's Hospital of Yunnan Province, Kunming, China
| | - Ya Zhang
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guoli Bi
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.
- Department of MRI, the First People's Hospital of Yunnan Province, Kunming, China.
| |
Collapse
|
4
|
Sheng Y, Zhang L, Hu Z, Peng B. Prediction of Early Mortality in Esophageal Cancer Patients with Liver Metastasis Using Machine Learning Approaches. Life (Basel) 2024; 14:1437. [PMID: 39598235 PMCID: PMC11595315 DOI: 10.3390/life14111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Patients with esophageal cancer liver metastasis face a high risk of early mortality, making accurate prediction crucial for guiding clinical decisions. However, effective predictive tools are currently limited. In this study, we used clinicopathological data from 1897 patients diagnosed with esophageal cancer liver metastasis between 2010 and 2020, which were sourced from the SEER database. Prognostic factors were identified using univariate and multivariate logistic regression, and seven machine learning models, including extreme gradient boosting (XGBoost) and support vector machine (SVM), were developed to predict early mortality. The models were evaluated using Receiver Operating Characteristic (ROC) curves, calibration curves, decision curve analysis (DCA), and F1 scores. Results showed that 40% of patients experienced all-cause early mortality and 38% had cancer-specific early mortality. Key predictors of early mortality included age, location, chemotherapy, and lung metastasis. Among the models, XGBoost performed best in predicting all-cause early mortality, while SVM excelled in predicting cancer-specific early mortality. These findings demonstrate that machine learning models, particularly XGBoost and SVM, can serve as valuable tools for predicting early mortality in patients with esophageal cancer liver metastasis, aiding clinical decision making.
Collapse
Affiliation(s)
| | | | | | - Bin Peng
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (Y.S.); (L.Z.); (Z.H.)
| |
Collapse
|
5
|
Rossi R, Medici F, Habberstad R, Klepstad P, Cilla S, Dall'Agata M, Kaasa S, Caraceni AT, Morganti AG, Maltoni M. Development of a predictive model for patients with bone metastases referred to palliative radiotherapy: Secondary analysis of a multicenter study (the PRAIS trial). Cancer Med 2024; 13:e70050. [PMID: 39390750 PMCID: PMC11467037 DOI: 10.1002/cam4.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The decision to administer palliative radiotherapy (RT) to patients with bone metastases (BMs), as well as the selection of treatment protocols (dose, fractionation), requires an accurate assessment of survival expectancy. In this study, we aimed to develop three predictive models (PMs) to estimate short-, intermediate-, and long-term overall survival (OS) for patients in this clinical setting. MATERIALS AND METHODS This study constitutes a sub-analysis of the PRAIS trial, a longitudinal observational study collecting data from patients referred to participating centers to receive palliative RT for cancer-induced bone pain. Our analysis encompassed 567 patients from the PRAIS trial database. The primary objectives were to ascertain the correlation between clinical and laboratory parameters with the OS rates at three distinct time points (short: 3 weeks; intermediate: 24 weeks; prolonged: 52 weeks) and to construct PMs for prognosis. We employed machine learning techniques, comprising the following steps: (i) identification of reliable prognostic variables and training; (ii) validation and testing of the model using the selected variables. The selection of variables was accomplished using the LASSO method (Least Absolute Shrinkage and Selection Operator). The model performance was assessed using receiver operator characteristic curves (ROC) and the area under the curve (AUC). RESULTS Our analysis demonstrated a significant impact of clinical parameters (primary tumor site, presence of non-bone metastases, steroids and opioid intake, food intake, and body mass index) and laboratory parameters (interleukin 8 [IL-8], chloride levels, C-reactive protein, white blood cell count, and lymphocyte count) on OS. Notably, different factors were associated with the different times for OS with only IL-8 included both in the PMs for short- and long-term OS. The AUC values for ROC curves for 3-week, 24-week, and 52-week OS were 0.901, 0.767, and 0.806, respectively. CONCLUSIONS We successfully developed three PMs for OS based on easily accessible clinical and laboratory parameters for patients referred to palliative RT for painful BMs. While our findings are promising, it is important to recognize that this was an exploratory trial. The implementation of these tools into clinical practice warrants further investigation and confirmation through subsequent studies with separate databases.
Collapse
Affiliation(s)
- Romina Rossi
- Palliative Care UnitIRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
- Radiation Oncology, Department of Medical and Surgical Sciences (DIMEC)Alma Mater Studiorum University of BolognaBolognaItaly
| | - Federica Medici
- Radiation Oncology, Department of Medical and Surgical Sciences (DIMEC)Alma Mater Studiorum University of BolognaBolognaItaly
- Radiation OncologyIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Ragnhild Habberstad
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Department of OncologySt. Olavs University HospitalTrondheimNorway
| | - Pal Klepstad
- Department of Circulation and Medical ImagingNorwegian University of Science and TechnologyTrondheimNorway
- Department of Anesthesiology and Intensive Care MedicineSt Olavs University HospitalTrondheimNorway
| | - Savino Cilla
- Medical Physics UnitResponsible Research HospitalCampobassoItaly
| | - Monia Dall'Agata
- Unit of Biostatistics and Clinical TrialsIRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
| | - Stein Kaasa
- Department of OncologyOslo University HospitalOsloNorway
| | - Augusto Tommaso Caraceni
- Palliative Care, Pain Therapy and Rehabilitation UnitFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Alessio Giuseppe Morganti
- Radiation Oncology, Department of Medical and Surgical Sciences (DIMEC)Alma Mater Studiorum University of BolognaBolognaItaly
- Radiation OncologyIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Marco Maltoni
- Medical Oncology Unit, Department of Medical and Surgical Sciences (DIMEC)Alma Mater Studiorum‐University of BolognaBolognaItaly
| |
Collapse
|
6
|
Tam SY, Tang FH, Chan MY, Lai HC, Cheung S. Prognosis Prediction in Head and Neck Squamous Cell Carcinoma by Radiomics and Clinical Information. Biomedicines 2024; 12:1646. [PMID: 39200111 PMCID: PMC11352052 DOI: 10.3390/biomedicines12081646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 09/01/2024] Open
Abstract
(1) Background: head and neck squamous cell carcinoma (HNSCC) is a common cancer whose prognosis is affected by its heterogeneous nature. We aim to predict 5-year overall survival in HNSCC radiotherapy (RT) patients by integrating radiomic and clinical information in machine-learning models; (2) Methods: HNSCC radiotherapy planning computed tomography (CT) images with RT structures were obtained from The Cancer Imaging Archive. Radiomic features and clinical data were independently analyzed by five machine-learning algorithms. The results were enhanced through a voted ensembled approach. Subsequently, a probability-weighted enhanced model (PWEM) was generated by incorporating both models; (3) Results: a total of 299 cases were included in the analysis. By receiver operating characteristic (ROC) curve analysis, PWEM achieved an area under the curve (AUC) of 0.86, which outperformed both radiomic and clinical factor models. Mean decrease accuracy, mean decrease Gini, and a chi-square test identified T stage, age, and disease site as the most important clinical factors in prognosis prediction; (4) Conclusions: our radiomic-clinical combined model revealed superior performance when compared to radiomic and clinical factor models alone. Further prospective research with a larger sample size is warranted to implement the model for clinical use.
Collapse
Affiliation(s)
- Shing-Yau Tam
- School of Medical and Health Sciences, Tung Wah College, Hong Kong
| | - Fuk-Hay Tang
- School of Medical and Health Sciences, Tung Wah College, Hong Kong
| | | | | | | |
Collapse
|
7
|
Rizk PA, Gonzalez MR, Galoaa BM, Girgis AG, Van Der Linden L, Chang CY, Lozano-Calderon SA. Machine Learning-Assisted Decision Making in Orthopaedic Oncology. JBJS Rev 2024; 12:01874474-202407000-00005. [PMID: 38991098 DOI: 10.2106/jbjs.rvw.24.00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
» Artificial intelligence is an umbrella term for computational calculations that are designed to mimic human intelligence and problem-solving capabilities, although in the future, this may become an incomplete definition. Machine learning (ML) encompasses the development of algorithms or predictive models that generate outputs without explicit instructions, assisting in clinical predictions based on large data sets. Deep learning is a subset of ML that utilizes layers of networks that use various inter-relational connections to define and generalize data.» ML algorithms can enhance radiomics techniques for improved image evaluation and diagnosis. While ML shows promise with the advent of radiomics, there are still obstacles to overcome.» Several calculators leveraging ML algorithms have been developed to predict survival in primary sarcomas and metastatic bone disease utilizing patient-specific data. While these models often report exceptionally accurate performance, it is crucial to evaluate their robustness using standardized guidelines.» While increased computing power suggests continuous improvement of ML algorithms, these advancements must be balanced against challenges such as diversifying data, addressing ethical concerns, and enhancing model interpretability.
Collapse
Affiliation(s)
- Paul A Rizk
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marcos R Gonzalez
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bishoy M Galoaa
- Interdisciplinary Science & Engineering Complex (ISEC), Northeastern University, Boston, Massachusetts
| | - Andrew G Girgis
- Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Lotte Van Der Linden
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Connie Y Chang
- Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Santiago A Lozano-Calderon
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Cui Y, Shi X, Qin Y, Wang Q, Cao X, Che X, Pan Y, Wang B, Lei M, Liu Y. Establishment and validation of an interactive artificial intelligence platform to predict postoperative ambulatory status for patients with metastatic spinal disease: a multicenter analysis. Int J Surg 2024; 110:2738-2756. [PMID: 38376838 PMCID: PMC11093492 DOI: 10.1097/js9.0000000000001169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/28/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Identification of patients with high-risk of experiencing inability to walk after surgery is important for surgeons to make therapeutic strategies for patients with metastatic spinal disease. However, there is a lack of clinical tool to assess postoperative ambulatory status for those patients. The emergence of artificial intelligence (AI) brings a promising opportunity to develop accurate prediction models. METHODS This study collected 455 patients with metastatic spinal disease who underwent posterior decompressive surgery at three tertiary medical institutions. Of these, 220 patients were collected from one medical institution to form the model derivation cohort, while 89 and 146 patients were collected from two other medical institutions to form the external validation cohorts 1 and 2, respectively. Patients in the model derivation cohort were used to develop and internally validate models. To establish the interactive AI platform, machine learning techniques were used to develop prediction models, including logistic regression (LR), decision tree (DT), random forest (RF), extreme gradient boosting machine (eXGBM), support vector machine (SVM), and neural network (NN). Furthermore, to enhance the resilience of the study's model, an ensemble machine learning approach was employed using a soft-voting method by combining the results of the above six algorithms. A scoring system incorporating 10 evaluation metrics was used to comprehensively assess the prediction performance of the developed models. The scoring system had a total score of 0 to 60, with higher scores denoting better prediction performance. An interactive AI platform was further deployed via Streamlit. The prediction performance was compared between medical experts and the AI platform in assessing the risk of experiencing postoperative inability to walk among patients with metastatic spinal disease. RESULTS Among all developed models, the ensemble model outperformed the six other models with the highest score of 57, followed by the eXGBM model (54), SVM model (50), and NN model (50). The ensemble model had the best performance in accuracy and calibration slope, and the second-best performance in precise, recall, specificity, area under the curve (AUC), Brier score, and log loss. The scores of the LR model, RF model, and DT model were 39, 46, and 26, respectively. External validation demonstrated that the ensemble model had an AUC value of 0.873 (95% CI: 0.809-0.936) in the external validation cohort 1 and 0.924 (95% CI: 0.890-0.959) in the external validation cohort 2. In the new ensemble machine learning model excluding the feature of the number of comorbidities, the AUC value was still as high as 0.916 (95% CI: 0.863-0.969). In addition, the AUC values of the new model were 0.880 (95% CI: 0.819-0.940) in the external validation cohort 1 and 0.922 (95% CI: 0.887-0.958) in the external validation cohort 2, indicating favorable generalization of the model. The interactive AI platform was further deployed online based on the final machine learning model, and it was available at https://postoperativeambulatory-izpdr6gsxxwhitr8fubutd.streamlit.app/ . By using the AI platform, researchers were able to obtain the individual predicted risk of postoperative inability to walk, gain insights into the key factors influencing the outcome, and find the stratified therapeutic recommendations. The AUC value obtained from the AI platform was significantly higher than the average AUC value achieved by the medical experts ( P <0.001), denoting that the AI platform obviously outperformed the individual medical experts. CONCLUSIONS The study successfully develops and validates an interactive AI platform for evaluating the risk of postoperative loss of ambulatory ability in patients with metastatic spinal disease. This AI platform has the potential to serve as a valuable model for guiding healthcare professionals in implementing surgical plans and ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Yunpeng Cui
- Department of Orthopedic Surgery, Peking University First Hospital
| | - Xuedong Shi
- Department of Orthopedic Surgery, Peking University First Hospital
| | - Yong Qin
- Department of Joint and Sports Medicine Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Qiwei Wang
- Department of Orthopedic Surgery, Peking University First Hospital
| | - Xuyong Cao
- Department of Orthopedic Surgery, The Fifth Medical Center of PLA General Hospital
| | - Xiaotong Che
- Department of Evaluation Office, Hainan Cancer Hospital, Haikou
| | - Yuanxing Pan
- Department of Orthopedic Surgery, Peking University First Hospital
| | - Bing Wang
- Department of Orthopedic Surgery, Peking University First Hospital
| | - Mingxing Lei
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing
- Department of Orthopedic Surgery, Hainan Hospital of Chinese PLA General Hospital, Sanya
| | - Yaosheng Liu
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital
| |
Collapse
|
9
|
Han T, Xiong F, Sun B, Zhong L, Han Z, Lei M. Development and validation of an artificial intelligence mobile application for predicting 30-day mortality in critically ill patients with orthopaedic trauma. Int J Med Inform 2024; 184:105383. [PMID: 38387198 DOI: 10.1016/j.ijmedinf.2024.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Given the intricate and grave nature of trauma-related injuries in ICU settings, it is imperative to develop and deploy reliable predictive tools that can aid in the early identification of high-risk patients who are at risk of early death. The objective of this study is to create and validate an artificial intelligence (AI) model that can accurately predict early mortality among critical fracture patients. METHODS A total of 2662 critically ill patients with orthopaedic trauma were included from the MIMIC III database. Early mortality was defined as death within 30 days in this study. The patients were randomly divided into a model training cohort and a model validation cohort. Various algorithms, including logistic regression (LR), extreme gradient boosting machine (eXGBM), decision tree (DT), support vector machine (SVM), random forest (RF), and neural network (NN), were employed. Evaluation metrics, including discrimination and calibration, were used to develop a comprehensive scoring system ranging from 0 to 60, with higher scores indicating better prediction performance. Furthermore, external validation was carried out using 131 patients. The optimal model was deployed as an internet-based AI tool. RESULTS Among all models, the eXGBM demonstrated the highest area under the curve (AUC) value (0.974, 95%CI: 0.959-0.983), followed by the RF model (0.951, 95%CI: 0.935-0.967) and the NN model (0.922, 95%CI: 0.905-0.941). Additionally, the eXGBM model outperformed other models in terms of accuracy (0.915), precision (0.906), recall (0.926), F1 score (0.916), Brier score (0.062), log loss (0.210), and discrimination slope (0.767). Based on the scoring system, the eXGBM model achieved the highest score (53), followed by RF (42) and NN (39). The LR, DT, and SVM models obtained scores of 28, 18, and 32, respectively. Decision curve analysis further confirmed the superior clinical net benefits of the eXGBM model. External validation of the model achieved an AUC value of 0.913 (95%CI: 0.878-0.948). Consequently, the model was deployed on the Internet at https://30-daymortalityincriticallyillpatients-fnfsynbpbp6rgineaspuim.streamlit.app/, allowing users to input patient features and obtain predicted risks of early mortality among critical fracture patients. Furthermore, the AI model successfully stratified patients into low or high risk of early mortality based on a predefined threshold and provided recommendations for appropriate therapeutic interventions. CONCLUSION This study successfully develops and validates an AI model, with the eXGBM algorithm demonstrating the highest predictive performance for early mortality in critical fracture patients. By deploying the model as a web-based AI application, healthcare professionals can easily access the tool, enabling them to predict 30-day mortality and aiding in the identification and management of high-risk patients among those critically ill with orthopedic trauma.
Collapse
Affiliation(s)
- Tao Han
- Department of Orthopedics, Hainan Hospital of PLA General Hospital, Hainan, China
| | - Fan Xiong
- Department of Orthopedic Surgery, People's Hospital of Macheng City, Huanggang, China
| | - Baisheng Sun
- Department of Critical Care Medicine, The First Medical Centre, PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Lixia Zhong
- Department of Intensive Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Zhencan Han
- Xiangya School of Medicine, Center South University, Changsha, China.
| | - Mingxing Lei
- Department of Orthopedics, Hainan Hospital of PLA General Hospital, Hainan, China; Chinese PLA Medical School, Beijing, China; Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, PLA General Hospital, Beijing, China.
| |
Collapse
|
10
|
Lei M, Wu B, Zhang Z, Qin Y, Cao X, Cao Y, Liu B, Su X, Liu Y. A Web-Based Calculator to Predict Early Death Among Patients With Bone Metastasis Using Machine Learning Techniques: Development and Validation Study. J Med Internet Res 2023; 25:e47590. [PMID: 37870889 PMCID: PMC10628690 DOI: 10.2196/47590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/05/2023] [Accepted: 08/24/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Patients with bone metastasis often experience a significantly limited survival time, and a life expectancy of <3 months is generally regarded as a contraindication for extensive invasive surgeries. In this context, the accurate prediction of survival becomes very important since it serves as a crucial guide in making clinical decisions. OBJECTIVE This study aimed to develop a machine learning-based web calculator that can provide an accurate assessment of the likelihood of early death among patients with bone metastasis. METHODS This study analyzed a large cohort of 118,227 patients diagnosed with bone metastasis between 2010 and 2019 using the data obtained from a national cancer database. The entire cohort of patients was randomly split 9:1 into a training group (n=106,492) and a validation group (n=11,735). Six approaches-logistic regression, extreme gradient boosting machine, decision tree, random forest, neural network, and gradient boosting machine-were implemented in this study. The performance of these approaches was evaluated using 11 measures, and each approach was ranked based on its performance in each measure. Patients (n=332) from a teaching hospital were used as the external validation group, and external validation was performed using the optimal model. RESULTS In the entire cohort, a substantial proportion of patients (43,305/118,227, 36.63%) experienced early death. Among the different approaches evaluated, the gradient boosting machine exhibited the highest score of prediction performance (54 points), followed by the neural network (52 points) and extreme gradient boosting machine (50 points). The gradient boosting machine demonstrated a favorable discrimination ability, with an area under the curve of 0.858 (95% CI 0.851-0.865). In addition, the calibration slope was 1.02, and the intercept-in-large value was -0.02, indicating good calibration of the model. Patients were divided into 2 risk groups using a threshold of 37% based on the gradient boosting machine. Patients in the high-risk group (3105/4315, 71.96%) were found to be 4.5 times more likely to experience early death compared with those in the low-risk group (1159/7420, 15.62%). External validation of the model demonstrated a high area under the curve of 0.847 (95% CI 0.798-0.895), indicating its robust performance. The model developed by the gradient boosting machine has been deployed on the internet as a calculator. CONCLUSIONS This study develops a machine learning-based calculator to assess the probability of early death among patients with bone metastasis. The calculator has the potential to guide clinical decision-making and improve the care of patients with bone metastasis by identifying those at a higher risk of early death.
Collapse
Affiliation(s)
- Mingxing Lei
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
- Department of Orthopedics, Hainan Hospital of Chinese PLA General Hospital, Hainan, China
- Chinese PLA Medical School, Beijing, China
| | - Bing Wu
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
- Department of Orthopedics, The First Medical Center of PLA General Hospital, Beijing, China
| | - Zhicheng Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yong Qin
- Department of Joint and Sports Medicine Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuyong Cao
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Yuncen Cao
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Baoge Liu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiuyun Su
- Intelligent Medical Innovation institute, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Yaosheng Liu
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
- Department of Orthopedics, The Fifth Medical Center of PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, PLA General Hospital, Beijing, China
| |
Collapse
|