1
|
Li G, Chen K, Dong S, Wei X, Zhou L, Wang B. Immunogenic cell death-related genes predict prognosis and response to immunotherapy in lung squamous cell carcinoma. Biotechnol Appl Biochem 2025; 72:138-149. [PMID: 39168830 DOI: 10.1002/bab.2652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
Lung squamous cell carcinoma (LUSC) is a malignancy with limited therapeutic options. Immunogenic cell death (ICD) has the potential to enhance the efficacy of cancer therapy by triggering immune responses. We aimed to explore the potential of ICD-based classification in predicting prognosis and response to immunotherapy for LUSC. RNA-seq information and clinical data of LUSC patients were obtained from The Cancer Genome Atlas (TCGA) dataset. ICD-related gene expressions in LUSC samples were analyzed by consensus clustering. Subsequently, differentially expressed genes (DEGs) between different ICD-related subsets were analyzed. Tumor mutation burden, immune cell infiltration, and survival analyses were conducted between different ICD subsets. Finally, an ICD-related risk signature was constructed and evaluated in LUSC patients, and the immunotherapy responses based on the gene expressions were also forecasted. ICD-high and ICD-low groups were defined, and 1466 DEGs were identified between the two subtypes. These DEGs were mainly enriched in collagen-containing extracellular matrix, cytokine-cytokine receptor interaction, the PI3K-Akt signaling pathway, and neuroactive ligand-receptor interaction. Furthermore, the ICD-low group exhibited a favorable prognosis, enhanced TTN and MUC16 mutation frequencies, increased infiltrating immune cells, and downregulated immune checkpoint expressions. Furthermore, we demonstrated that an ICD-related model (based on CD4, NLRP3, NT5E, and TLR4 genes) could forecast the prognosis of LUSC, and ICD risk scores were lower in the responder group. In summary, the predicted values of ICD-related genes (CD4, NLRP3, NT5E, and TLR4) for the prognosis and response to immunotherapy in LUSC were verified in the study, which benefits immunotherapy-based interventions for LUSC patients.
Collapse
Affiliation(s)
- Guoping Li
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang, China
| | - Kai Chen
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang, China
| | - Shunli Dong
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang, China
| | - Xiang Wei
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang, China
| | - Lingyan Zhou
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang, China
| | - Bin Wang
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou, Zhejiang, China
| |
Collapse
|
2
|
Wu D, Zhou Y, Shi X, Yi X, Sheng Z, Fan L, Ge J, Cheng W, Zhou W, He H, Fu D. SLC11A1 promotes kidney renal clear cell carcinoma (KIRC) progression by remodeling the tumor microenvironment. Toxicol Appl Pharmacol 2024; 487:116975. [PMID: 38762191 DOI: 10.1016/j.taap.2024.116975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Kidney renal clear cell carcinoma (KIRC) is a highly immune-infiltrated kidney cancer with the highest mortality rate and the greatest potential for invasion and metastasis. Solute carrier family 11 member1 (SLC11A1) is a phagosomal membrane protein located in monocytes and plays a role in innate immunity, autoimmune diseases, and infection, but its expression and biological role in KIRC is still unknown. In this study, we sought to investigate the potential value of SLC11A1 according to tumor growth and immune response in KIRC. TIMER and UALCAN database was used to analyze the expression feature and prognostic significance of SLC11A1 and its correlation with immune-related biomarkers in KIRC. Proliferation, migration, and invasion were measured using colony formation, EdU, and transwell assays. Role of SLC11A1 on KIRC tumor growth was examined by the xenograft tumor model in vivo. Effects of KIRC cells on macrophage polarization and the proliferation and apoptosis of CD8+ T cells were analyzed using flow cytometry assays. Herein, SLC11A1 was highly expressed in KIRC tissues and cell lines. SLC11A1 downregulation repressed KIRC cell proliferation, migration, invasion, macrophage, and lymphocyte immunity in vitro, as well as hindered tumor growth in vivo. SLC11A1 is significantly correlated with immune cell infiltration and immune-related biomarkers. In KIRC patients, SLC11A1 is highly expressed and positively correlated with the immune-related factors CCL2 and PD-L1. SLC11A1 induced CCL2 and PD-L1 expression, thereby activating the JAK/STAT3 pathway. SLC11A1 deficiency constrained KIRC cell malignant phenotypes and immune response via regulating CCL2 and PD-L1-mediated JAK/STAT3 pathway, providing a promising therapeutic target for KIRC treatment.
Collapse
Affiliation(s)
- Ding Wu
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China
| | - Yulin Zhou
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China
| | - Xiuquan Shi
- Department of Urology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Xiaoming Yi
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China
| | - Zhengcheng Sheng
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China
| | - Li Fan
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China
| | - Jingping Ge
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China
| | - Wen Cheng
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China
| | - Wenquan Zhou
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China.
| | - Haowei He
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China
| | - Dian Fu
- Department of Urology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu, China
| |
Collapse
|
3
|
Jiang Z, Wang J, Dao C, Zhu M, Li Y, Liu F, Zhao Y, Li J, Yang Y, Pan Z. Utilizing a novel model of PANoptosis-related genes for enhanced prognosis and immune status prediction in kidney renal clear cell carcinoma. Apoptosis 2024; 29:681-692. [PMID: 38281281 DOI: 10.1007/s10495-023-01932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/30/2024]
Abstract
Kidney renal clear cell carcinoma (KIRC) is the most common histopathologic type of renal cell carcinoma. PANoptosis, a cell death pathway that involves an interplay between pyroptosis, apoptosis and necroptosis, is associated with cancer immunity and development. However, the prognostic significance of PANoptosis in KIRC remains unclear. RNA-sequencing expression and mutational profiles from 532 KIRC samples and 72 normal samples with sufficient clinical data were retrieved from the Cancer Genome Atlas (TCGA) database. A prognostic model was constructed using differentially expressed genes (DEGs) related to PANoptosis in the TCGA cohort and was validated in a Gene Expression Omnibus (GEO) cohorts. Incorporating various clinical features, the risk model remained an independent prognostic factor in multivariate analysis, and it demonstrated superior performance compared to unsupervised clustering of the 21 PANoptosis-related genes alone. Further mutational analysis showed fewer VHL and more BAP1 alterations in the high-risk group, with alterations in both genes also associated with patient prognosis. The high-risk group was characterized by an unfavorable immune microenvironment, marked by reduced levels of CD4 + T cells and natural killer cells, but increased M2 macrophages and regulatory T cells. Finally, the risk model was predictive of response to immune checkpoint blockade, as well as sensitivity to sunitinib and paclitaxel. The PANoptosis-related risk model developed in this study enables accurate prognostic prediction in KIRC patients. Its associations with the tumor immune microenvironment and drug efficacy may offer potential therapeutic targets and inform clinical decisions.
Collapse
Affiliation(s)
- Zhansheng Jiang
- Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, 1 Huanhu West Road, Tianjin, 300060, China
| | - Jiahe Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenghuan Dao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingyu Zhu
- Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, 1 Huanhu West Road, Tianjin, 300060, China
| | - Yuan Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangchao Liu
- Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, 1 Huanhu West Road, Tianjin, 300060, China
| | - Yangyang Zhao
- Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, 1 Huanhu West Road, Tianjin, 300060, China
| | - Jiayue Li
- Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, 1 Huanhu West Road, Tianjin, 300060, China
| | - Yinli Yang
- Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, 1 Huanhu West Road, Tianjin, 300060, China.
| | - Zhanyu Pan
- Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, 1 Huanhu West Road, Tianjin, 300060, China.
| |
Collapse
|
4
|
Liu W, Xiao Z, Dong M, Li X, Huang Z. Decreased expression of TXNIP is associated with poor prognosis and immune infiltration in kidney renal clear cell carcinoma. Oncol Lett 2024; 27:97. [PMID: 38288038 PMCID: PMC10823309 DOI: 10.3892/ol.2024.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/16/2023] [Indexed: 01/31/2024] Open
Abstract
The most prevalent and insidious type of kidney cancer is kidney clear cell carcinoma (KIRC). Thioredoxin-interacting protein (TXNIP) encodes a thioredoxin-binding protein involved in cellular energy metabolism, redox homeostasis, apoptosis induction and inflammatory responses. However, the relationship between TXNIP, immune infiltration and its prognostic value in KIRC remains unclear. Thus, the present study evaluated the potential for TXNIP as a prognostic marker in patients with KIRC. Data from The Cancer Genome Atlas were used to assess relative mRNA expression levels of TXNIP in different types of cancer. The protein expression levels of TXNIP were evaluated using the Human Protein Atlas. Enrichment analysis of genes co-expressed with TXNIP was performed to assess relevant biological processes that TXNIP may be involved in. CIBERSORT was used to predict the infiltration of 21 tumor-infiltrating immune cells (TIICs). Univariate and multivariate Cox regression analyses were used to assess the relationship between TXNIP expression and prognosis. Single-cell RNA-sequencing datasets were used to evaluate the mRNA expression levels of TXNIP in certain immune cells in KIRC. The CellMiner database was used to analyze the relationship between TXNIP mRNA expression and drug sensitivity in KIRC. The results from the present study demonstrated that TXNIP expression was significantly decreased in KIRC tissue compared with that in normal tissue, as confirmed by western blotting and reverse transcription-quantitative PCR. In addition, downregulated TXNIP expression was significantly associated with poor prognosis, a high histological grade and an advanced stage. The Cell Counting Kit-8 assay demonstrated that TXNIP overexpression significantly suppressed tumor cell proliferation. Univariate and multivariate Cox regression analyses indicated that TXNIP served as a separate prognostic factor in KIRC. Moreover, TXNIP expression was significantly correlated with the accumulation of several TIICs and its overexpression significantly downregulated the mRNA expression levels of CD25 and cytotoxic T-lymphocyte-associated protein 4, immune cell surface markers in CD4+ T lymphocytes. In conclusion, TXNIP may be used as a possible biomarker to assess unfavorable prognostic outcomes and identify immunotherapy targets in KIRC.
Collapse
Affiliation(s)
- Wanlu Liu
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Zhen Xiao
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Mingyou Dong
- The Key Laboratory of Molecular Pathology of Hepatobiliary Diseases of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Xiaolei Li
- Scientific Experiment Center, Affiliated Southwest Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Zhongshi Huang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| |
Collapse
|