1
|
Cabo J, Bihin B, Debortoli N, Lepage V, Soleimani R, Bennis R, Favressed J, Borght TV, Graux C, Fervaille C, Degosserie J, Pouplard M, Mullier F. Prediction of Lymphoma Aggressiveness Using Machine Learning Algorithms. Int J Lab Hematol 2025. [PMID: 40269341 DOI: 10.1111/ijlh.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/27/2025] [Accepted: 03/21/2025] [Indexed: 04/25/2025]
Abstract
INTRODUCTION Lymph nodes are essential to diagnose lymphoid neoplasms, metastases, and infections. Some lymphomas, particularly aggressive non-Hodgkin lymphomas (NHL), need urgent diagnosis. Combining lymph node cytology (LNC) and flow cytometry (FC) with other rapidly available parameters through multivariable predictive models could offer valuable diagnostic information while waiting for anatomopathological results. MATERIALS AND METHODS Results of 196 lymph node specimens were retrospectively analyzed for parameters like age, sex, LNC, FC, positron emission tomography scan, lymphocytosis, leukocytosis, lactate dehydrogenase (LDH) levels, and hemoglobin. We constructed five multivariable models predicting the aggressive nature of lymphoma as defined by the anatomopathological diagnostic. The first three were logistic regression models based on two (model 1), four (model 2), and up to 16 independent variables (model 3). The last two models were based on ensemble learning algorithms, bagging (model 4) and boosting (model 5), respectively. The performance of these five models was compared after 10-fold cross-validation, evaluating metrics such as sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC). RESULTS Compared to individual variables associated with the aggressive nature of the lymphoma (AUCs from 0.69 to 0.87), the multivariable models achieved better AUCs, ranging from 0.88 to 0.94. The best model (model 5) achieved a sensitivity and a specificity of 77% and 94%, respectively. CONCLUSION LNC, FC, and other rapidly available parameters are associated with the aggressive nature of the lymphomas. It is possible to combine them in multivariable models to obtain a valuable diagnostic information and to initiate a prompt treatment.
Collapse
Affiliation(s)
- Julien Cabo
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center (NTHC), Hematology Laboratory, Yvoir, Belgium
| | - Benoît Bihin
- Université Catholique de Louvain, CHU UCL Namur, Scientific Support Unit, Yvoir, Belgium
| | | | - Virgine Lepage
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center (NTHC), Hematology Laboratory, Yvoir, Belgium
| | - Reza Soleimani
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center (NTHC), Hematology Laboratory, Yvoir, Belgium
| | - Rhita Bennis
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center (NTHC), Hematology Laboratory, Yvoir, Belgium
| | - Julien Favressed
- Université de Namur, Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), Namur, Belgium
| | - Thierry Vander Borght
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center (NTHC), Nuclear Medicine, Yvoir, Belgium
| | - Carlos Graux
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center (NTHC), hematology, Yvoir, Belgium
| | - Caroline Fervaille
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center (NTHC), Anatomopathology, Yvoir, Belgium
| | | | - Marie Pouplard
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center (NTHC), Hematology Laboratory, Yvoir, Belgium
| | - François Mullier
- Université Catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center (NTHC), Hematology Laboratory, Yvoir, Belgium
| |
Collapse
|
2
|
Shang J, Zhou X, Liu B, Hu S, Wang X. Novel serous effusion-related risk models and biomarkers for predicting prognosis in T-cell lymphoma patients. Ann Hematol 2024:10.1007/s00277-024-06109-9. [PMID: 39604596 DOI: 10.1007/s00277-024-06109-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
T-cell lymphomas (TCLs) are a cluster of lymphoproliferative diseases with high heterogeneity, which lack accurate prognostic models and standard treatment regimen at present. Serous effusion (SE) is a relatively common manifestation and poses more challenges for risk stratification in TCLs. In this study, entire of 518 newly diagnosed TCLs patients were included. SE was found to be tightly correlated to clinical characteristics and prognosis in TCL patients, and SE volume (SEV) > 1000 ml was identified as a potential prognostic factor. Novel AEBS risk model, including age > 60, ECOG PS > 1, β2-microglobulin (BMG) > 3.0 mg/L and SEV > 1000 ml, which exerted superior efficacy for risk stratification compared to the current risk systems in TCL patients with SE. Besides, multiple RNA-seq datasets were used for the identification and function analysis of SE-related genes (SERGs). TCL patients in different SERGs-associated subgroups exhibited discrepancy in the infiltration of immunocytes and the expression of immune checkpoints. SERGs signature, including HIF1A, FERMT2, NFATC1 and COL1A1, was established and demonstrated to have distinguishing capacity for predicting prognosis in TCL patients. Moreover, immunohistochemistry revealed that SE-related molecule HIF1A was reductively expressed and related to inferior prognosis in TCL patients, especially in SE group. Pan-cancer analysis found HIF1A expression was decreased in several tumors, and chemosensitivity analysis revealed that HIF1A was associated with sensitivity of several anti-tumor drugs, such as Sorafenib, Navitoclax, and Venetoclax. Our findings provide evidence for identifying high-risk population and facilitating individualized treatment in TCL patients with SE.
Collapse
Affiliation(s)
- Juanjuan Shang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiaoli Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Bingyu Liu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
3
|
Nowialis P, Tobon J, Lopusna K, Opavska J, Badar A, Chen D, Abdelghany R, Pozas G, Fingeret J, Noel E, Riva A, Fujiwara H, Ishov A, Opavsky R. Genome-Wide Methylation Profiling of Peripheral T-Cell Lymphomas Identifies TRIP13 as a Critical Driver of Tumor Proliferation and Survival. EPIGENOMES 2024; 8:32. [PMID: 39189258 PMCID: PMC11348144 DOI: 10.3390/epigenomes8030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Cytosine methylation contributes to the regulation of gene expression and normal hematopoiesis in mammals. It is catalyzed by the family of DNA methyltransferases that include DNMT1, DNMT3A, and DNMT3B. Peripheral T-cell lymphomas (PTCLs) represent aggressive mature T-cell malignancies exhibiting a broad spectrum of clinical features with poor prognosis and inadequately understood molecular pathobiology. To better understand the molecular landscape and identify candidate genes involved in disease maintenance, we profiled DNA methylation and gene expression of PTCLs. We found that the methylation patterns in PTCLs are deregulated and heterogeneous but share 767 hypo- and 567 hypermethylated differentially methylated regions (DMRs) along with 231 genes up- and 91 genes downregulated in all samples, suggesting a potential association with tumor development. We further identified 39 hypomethylated promoters associated with increased gene expression in the majority of PTCLs. This putative oncogenic signature included the TRIP13 (thyroid hormone receptor interactor 13) gene whose genetic and pharmacologic inactivation inhibited the proliferation of T-cell lines by inducing G2-M arrest and apoptosis. Our data thus show that human PTCLs have a significant number of recurrent methylation alterations that may affect the expression of genes critical for proliferation whose targeting might be beneficial in anti-lymphoma treatments.
Collapse
Affiliation(s)
- Pawel Nowialis
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Julian Tobon
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Katarina Lopusna
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Biomedical Research Center, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Jana Opavska
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Arshee Badar
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Duo Chen
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Reem Abdelghany
- UF College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Gene Pozas
- UF College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Jacob Fingeret
- UF College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Emma Noel
- College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Alberto Riva
- ICBR Bioinformatics, Cancer and Genetics Research Complex, University of Florida, Gainesville, FL 32610, USA
| | - Hiroshi Fujiwara
- Department of Hematology, Clinical Immunology, and Infectious Diseases, Ehime University Graduate School of Medicine, Toon 791-0295, Japan
| | - Alexander Ishov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Rene Opavsky
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
Nowialis P, Tobon J, Lopusna K, Opavska J, Badar A, Chen D, Abdelghany R, Pozas G, Fingeret J, Noel E, Riva A, Fujiwara H, Opavsky R. Genome-wide methylation profiling of Peripheral T-cell lymphomas identifies TRIP13 as a critical driver of tumor proliferation and survival. RESEARCH SQUARE 2024:rs.3.rs-3971059. [PMID: 38464090 PMCID: PMC10925438 DOI: 10.21203/rs.3.rs-3971059/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Cytosine methylation of genomic DNA contributes to the regulation of gene expression and is involved in normal development including hematopoiesis in mammals. It is catalyzed by the family of DNA methyltransferases (DNMTs) that include DNMT1, DNMT3A, and DNMT3B. Peripheral T-cell lymphomas (PTCLs) represent a diverse group of aggressive mature T-cell malignancies accounting for approximately 10-15% of non-Hodgkin lymphoma cases in the US. PTCLs exhibit a broad spectrum of clinical, histological, and immunophenotypic features with poor prognosis and inadequately understood molecular pathobiology. To better understand the molecular landscape and identify candidate genes involved in disease maintenance, we used high-resolution Whole Genome Bisulfite Sequencing (WGBS) and RNA-seq to profile DNA methylation and gene expression of PTCLs and normal T-cells. We found that the methylation patterns in PTCLs are deregulated and heterogeneous but share 767 hypo- and 567 hypermethylated differentially methylated regions (DMRs) along with 231 genes up- and 91 genes downregulated in all samples suggesting a potential association with tumor development. We further identified 39 hypomethylated promoters associated with increased gene expression in the majority of PTCLs. This putative oncogenic signature included the TRIP13 (thyroid hormone receptor interactor 13) gene whose both genetic and pharmacologic inactivation, inhibited cellular growth of PTCL cell lines by inducing G2-M arrest accompanied by apoptosis suggesting that such an approach might be beneficial in human lymphoma treatment. Altogether we show that human PTCLs are characterized by a large number of recurrent methylation alterations, and demonstrated that TRIP13 is critical for PTCL maintenance in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | - Duo Chen
- University of Florida College of Medicine
| | - Reem Abdelghany
- UF College of Liberal Arts and Sciences, University of Florida
| | - Gene Pozas
- UF College of Liberal Arts and Sciences, University of Florida
| | - Jacob Fingeret
- UF College of Liberal Arts and Sciences, University of Florida
| | | | | | | | | |
Collapse
|
5
|
Wang Y, Iha H. The Novel Link between Gene Expression Profiles of Adult T-Cell Leukemia/Lymphoma Patients' Peripheral Blood Lymphocytes and Ferroptosis Susceptibility. Genes (Basel) 2023; 14:2005. [PMID: 38002949 PMCID: PMC10671613 DOI: 10.3390/genes14112005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Ferroptosis, a regulated cell death dependent on iron, has garnered attention as a potential broad-spectrum anticancer approach in leukemia research. However, there has been limited ferroptosis research on ATL, an aggressive T-cell malignancy caused by HTLV-1 infection. Our study employs bioinformatic analysis, utilizing dataset GSE33615, to identify 46 ferroptosis-related DEGs and 26 autophagy-related DEGs in ATL cells. These DEGs are associated with various cellular responses, chemical stress, and iron-related pathways. Autophagy-related DEGs are linked to autophagy, apoptosis, NOD-like receptor signaling, TNF signaling, and the insulin resistance pathway. PPI network analysis revealed 10 hub genes and related biomolecules. Moreover, we predicted crucial miRNAs, transcription factors, and potential pharmacological compounds. We also screened the top 20 medications based on upregulated DEGs. In summary, our study establishes an innovative link between ATL treatment and ferroptosis, offering promising avenues for novel therapeutic strategies in ATL.
Collapse
Affiliation(s)
- Yu Wang
- Department of Microbiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu 879-5593, Oita, Japan;
| | - Hidekatsu Iha
- Department of Microbiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu 879-5593, Oita, Japan;
- Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu 879-5593, Oita, Japan
| |
Collapse
|
6
|
Yang H, Xun Y, Ke C, Tateishi K, You H. Extranodal lymphoma: pathogenesis, diagnosis and treatment. MOLECULAR BIOMEDICINE 2023; 4:29. [PMID: 37718386 PMCID: PMC10505605 DOI: 10.1186/s43556-023-00141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Approximately 30% of lymphomas occur outside the lymph nodes, spleen, or bone marrow, and the incidence of extranodal lymphoma has been rising in the past decade. While traditional chemotherapy and radiation therapy can improve survival outcomes for certain patients, the prognosis for extranodal lymphoma patients remains unsatisfactory. Extranodal lymphomas in different anatomical sites often have distinct cellular origins, pathogenic mechanisms, and clinical manifestations, significantly influencing their diagnosis and treatment. Therefore, it is necessary to provide a comprehensive summary of the pathogenesis, diagnosis, and treatment progress of extranodal lymphoma overall and specifically for different anatomical sites. This review summarizes the current progress in the common key signaling pathways in the development of extranodal lymphomas and intervention therapy. Furthermore, it provides insights into the pathogenesis, diagnosis, and treatment strategies of common extranodal lymphomas, including gastric mucosa-associated lymphoid tissue (MALT) lymphoma, mycosis fungoides (MF), natural killer/T-cell lymphoma (nasal type, NKTCL-NT), and primary central nervous system lymphoma (PCNSL). Additionally, as PCNSL is one of the extranodal lymphomas with the worst prognosis, this review specifically summarizes prognostic indicators and discusses the challenges and opportunities related to its clinical applications. The aim of this review is to assist clinical physicians and researchers in understanding the current status of extranodal lymphomas, enabling them to make informed clinical decisions that contribute to improving patient prognosis.
Collapse
Affiliation(s)
- Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, China
| | - Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, China
| | - Chao Ke
- Department of Neurosurgery and Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, 2360004, Japan
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Pediatric Hematology and Oncology, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, China.
| |
Collapse
|