1
|
Dinc R, Ardic N. Inhibition of Neutrophil Extracellular Traps: A Potential Therapeutic Strategy for Hemorrhagic Stroke. J Integr Neurosci 2025; 24:26357. [PMID: 40302254 DOI: 10.31083/jin26357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 05/02/2025] Open
Abstract
Stroke is a major health problem with high mortality and morbidity rates, partly due to limited treatment options. Inflammation has a critical role in the secondary damage that occurs following a stroke event. Neutrophil extracellular traps (NETs) are released by neutrophils and contribute to the progression of neuroinflammation that further worsens brain damage. The prevention of NET formation at sites of brain damage has been reported to prevent neuroinflammation and improve neurological deficits. The aim of this article was to assess the importance of NETs as a treatment target for hemorrhagic stroke in light of the available evidence. NETs are network structures that consist of decondensed DNA strands coated with granule proteins such as citrullinated histones, neutrophile esterase (NE), myeloperoxidase (MPO), and high mobility group protein B1 (HMGB1). Peptidyl arginine deiminase type-IV (PAD4) plays a key role in the formation of NETs. Inhibitors of NET formation, such as the PAD4-specific inhibitor GSK484, are effective at preventing inflammation and thus ultimately reducing brain damage after stroke. In conclusion, inhibition of NETs offers a potential therapeutic strategy for hemorrhagic stroke, although further research is needed to clarify the role of NETs in this condition.
Collapse
Affiliation(s)
- Rasit Dinc
- INVAMED Medical Innovation Institute, 06810 Ankara, Turkey
| | - Nurittin Ardic
- Med-International UK Health Agency Ltd., LE10 0BZ Hinckley/Leicestershire, UK
| |
Collapse
|
2
|
Benavent N, Cañete A, Argilés B, Juan-Ribelles A, Bonanad S, Oto J, Medina P. Delving into the clinical impact of NETs in pediatric cancer. Pediatr Res 2025; 97:898-907. [PMID: 39095576 DOI: 10.1038/s41390-024-03437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
Pediatric cancer, a complex and heterogeneous group of diseases, continues to challenge medical research and treatment strategies. Despite advances in precision medicine and immunotherapy, certain aggressive subtypes of pediatric cancer are resistant to conventional therapies, requiring further exploration of potential therapeutic targets. Neutrophil extracellular traps (NETs), net-like structures released by neutrophils, have emerged as a potential player in the pediatric cancer landscape. However, our understanding of their role in pediatric oncology remains limited. This systematic review examines the current state of the NETs literature in pediatric cancer, focusing on the most frequent subtypes. The review reveals the scarcity of research in this area, highlighting the need for further investigation. The few studies available suggest that NETs may influence infection risk, treatment resistance and prognosis in certain pediatric malignancies. Although the field is still in its infancy, it holds great promise for advancing our understanding of pediatric cancer biology and potential therapeutic pathways. IMPACT: This review identifies a significant gap in research on neutrophil extracellular traps (NETs) in pediatric cancer. It provides a summary of existing studies and their promising findings and potential, as well as a comprehensive overview of current research on NETs in certain tumor types. It also emphasizes the lack of specific studies in pediatric cancer. The review encourages the prioritization of NET research in pediatric oncology, with the aim of improving prognosis and developing new treatments through increased understanding and targeted studies.
Collapse
Affiliation(s)
- Nuria Benavent
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain.
| | - Adela Cañete
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
- Pediatric Oncology and hematology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Bienvenida Argilés
- Pediatric Oncology and hematology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Antonio Juan-Ribelles
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
- Pediatric Oncology and hematology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Santiago Bonanad
- Thrombosis and Haemostasis Unit, Hematology Service, La Fe University and Polytechnic Hospital, Valencia, Spain
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| |
Collapse
|
3
|
Liang B, Yuan Y, Jiang Q, Ma T, Liu X, Li Y. How neutrophils shape the immune response of triple-negative breast cancer: Novel therapeutic strategies targeting neutrophil extracellular traps. Biomed Pharmacother 2024; 178:117211. [PMID: 39068851 DOI: 10.1016/j.biopha.2024.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is labeled as an aggressive type of breast cancer and still has limited therapeutic targets despite the advanced development of cancer therapy. Neutrophils, representing the conventional inflammatory response, significantly influence the malignant phenotype of tumors, supported by abundant evidence. As a vital function of neutrophils, NETs are the extracellular fibrous networks including the depolymerized chromatin DNA frames with several antimicrobial proteins. They are produced by activated neutrophils and are involved in host defence or immunological reactions. This review focuses more on the interactions between neutrophils and TNBC, focusing on how neutrophils modulate the immune response within the tumor milieu. Specifically, we delve into the role of NETs, which are involved in promoting tumor growth and metastasis, inhibiting anti-tumor immunity, and promoting tumor-associated thrombosis. Furthermore, we discuss recent advancements in therapeutic strategies aimed at targeting NETs to enhance the efficacy of TNBC treatment. The advances in the knowledge of the dynamics between neutrophils and TNBC may lead to the opportunity to devise new immunotherapeutic strategies targeted to fight this hostile type of breast cancer.
Collapse
Affiliation(s)
- Bing Liang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, PR China
| | - Ye Yuan
- Department of the Second Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110000, PR China
| | - Qianheng Jiang
- School of Stomatology, China Medical University, Shenyang, Liaoning 110000, PR China
| | - Tao Ma
- Department of Gastrointestinal Hernia Surgery, Tongliao City Hospital, Tongliao, Inner Mongolia Autonomous Region 028007, PR China
| | - Xiaodan Liu
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, PR China.
| | - Yan Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, PR China.
| |
Collapse
|
4
|
Yang Y, Yu S, Lv C, Tian Y. NETosis in tumour microenvironment of liver: From primary to metastatic hepatic carcinoma. Ageing Res Rev 2024; 97:102297. [PMID: 38599524 DOI: 10.1016/j.arr.2024.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/23/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Hepatocellular carcinoma is a common and highly lethal tumour. The tumour microenvironment (TME) plays an important role in the progression and metastasis of hepatocellular carcinoma (HCC). A cell death mechanism, termed NETosis, has been found to play an important role in the TME of HCC. SUMMARY This review article focuses on the role of NETosis in the TME of HCC, a novel form of cell death in which neutrophils capture and kill microorganisms by releasing a type of DNA meshwork fibres called "NETs". This process is associated with neutrophil activation, local inflammation and cytokines. The study suggests that NETs play a multifaceted role in the development and metastasis of HCC. The article also discusses the role of NETs in tumour proliferation and metastasis, epithelial-mesenchymal transition (EMT), and surgical stress. In addition, the article discusses the interaction of NETosis with other immune cells in the TME and related therapeutic strategies. A deeper understanding of NETosis can help us better understand the complexity of the immune system and provide a new therapeutic basis for the treatment and prevention of HCC. KEY INFORMATION In conclusion, NETosis is important in the TME of liver. NETs have been shown to contribute to the progression and metastasis of liver cancer. The interaction between NETosis and immune cells in the TME, as well as related therapies, are important areas of research.
Collapse
Affiliation(s)
- Yi Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Siyue Yu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
5
|
de Mattos TRF, Formiga-Jr MA, Saraiva EM. Resveratrol prevents the release of neutrophil extracellular traps (NETs) by controlling hydrogen peroxide levels and nuclear elastase migration. Sci Rep 2024; 14:9107. [PMID: 38643283 PMCID: PMC11032324 DOI: 10.1038/s41598-024-59854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are defense mechanisms that trap and kill microorganisms and degrade cytokines. However, excessive production, dysregulation of suppression mechanisms, or inefficient removal of NETs can contribute to increased inflammatory response and the development of pathological conditions. Therefore, research has focused on identifying drugs that inhibit or delay the NET release process. Since reactive oxygen species (ROS) play a significant role in NET release, we aimed to investigate whether resveratrol (RSV), with a wide range of biological and pharmacological properties, could modulate NET release in response to different stimuli. Thus, human neutrophils were pretreated with RSV and subsequently stimulated with PMA, LPS, IL-8, or Leishmania. Our findings revealed that RSV reduced the release of NETs in response to all tested stimuli. RSV decreased hydrogen peroxide levels in PMA- and LPS-stimulated neutrophils, inhibited myeloperoxidase activity, and altered the localization of neutrophil elastase. RSV inhibition of NET generation was not mediated through A2A or A2B adenosine receptors or PKA. Based on the observed effectiveness of RSV in inhibiting NET release, our study suggests that this flavonoid holds potential as a candidate for treating NETs involving pathologies.
Collapse
Affiliation(s)
- Thayana Roberta Ferreira de Mattos
- Laboratório de Imunidade Inata, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Marcos Antonio Formiga-Jr
- Laboratório de Imunidade Inata, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Elvira Maria Saraiva
- Laboratório de Imunidade Inata, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Zhong W, Wang Q, Shen X, Lv Y, Sun L, An R, Zhu H, Cai H, Chen G, Liu A, Du J. Neutrophil Extracellular Trap is Surrogate Biomarker for Prognosis and Response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer. J Inflamm Res 2023; 16:6443-6455. [PMID: 38164163 PMCID: PMC10758164 DOI: 10.2147/jir.s441981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose To demonstrate the intrinsic association of Neutrophil extracellular traps (NETs) with outcome and neoadjuvant therapy response of locally advanced rectal cancer (LARC), and the mechanisms. Patients and Methods We enrolled 240 patients with LARC who underwent surgery without neoadjuvant therapy in two independent sets (training and validation), and 153 patients who received neoadjuvant therapy with biopsy followed by surgery. Immunohistochemistry, immunofluorescence staining and bioinformatics analysis were performed in formalin-fixed paraffin-embedded sections. NETs were identified by costaining for myeloperoxidase and citrullinated histone H3. Results NETs were associated with recurrence-free survival in the surgical training and validation sets. High-NET density predicted poor postoperative survival of patients with LARC. Multivariate analysis identified NETs, TNM stage, and neutrophil-to-lymphocyte ratio as independent prognostic factors for recurrence-free survival. Low-NETs LARC demonstrated increased CD8+ T cell and lower T regulatory cell infiltration, which indicated a tumor immune microenvironment with strong antitumor capacity. High-NET density was associated with epithelial-mesenchymal transition, which is considered to contribute to tumor progression. In the neoadjuvant therapy cohort, high-NET density on biopsy was significantly associated with reduced likelihood of complete/near complete response. Conclusion NET was an independent prognostic factor in LARC that were associated with patients' survival, and NET density in pretreatment biopsies was an independent predictive biomarker of response to neoadjuvant therapy. This biomarker may be helpful in predicting survival in LARC with improved accuracy and selecting patients who will respond to neoadjuvant therapy.
Collapse
Affiliation(s)
- Wentao Zhong
- The Second School of Clinical Medicine, Southern Medical University, Guangdong, 510515, People’s Republic of China
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Qianyu Wang
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
| | - Xiaofei Shen
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Yuan Lv
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Liang Sun
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
| | - Ran An
- Department of Pathology, the 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
| | - Hongyan Zhu
- Department of Pathology, the 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
| | - Huiyun Cai
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
| | - Gang Chen
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Aijun Liu
- Department of Pathology, the 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
| | - Junfeng Du
- The Second School of Clinical Medicine, Southern Medical University, Guangdong, 510515, People’s Republic of China
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, People’s Republic of China
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| |
Collapse
|
7
|
Sevcikova A, Mladosievicova B, Mego M, Ciernikova S. Exploring the Role of the Gut and Intratumoral Microbiomes in Tumor Progression and Metastasis. Int J Mol Sci 2023; 24:17199. [PMID: 38139030 PMCID: PMC10742837 DOI: 10.3390/ijms242417199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer cell dissemination involves invasion, migration, resistance to stressors in the circulation, extravasation, colonization, and other functions responsible for macroscopic metastases. By enhancing invasiveness, motility, and intravasation, the epithelial-to-mesenchymal transition (EMT) process promotes the generation of circulating tumor cells and their collective migration. Preclinical and clinical studies have documented intensive crosstalk between the gut microbiome, host organism, and immune system. According to the findings, polymorphic microbes might play diverse roles in tumorigenesis, cancer progression, and therapy response. Microbial imbalances and changes in the levels of bacterial metabolites and toxins promote cancer progression via EMT and angiogenesis. In contrast, a favorable microbial composition, together with microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), can attenuate the processes of tumor initiation, disease progression, and the formation of distant metastases. In this review, we highlight the role of the intratumoral and gut microbiomes in cancer cell invasion, migration, and metastatic ability and outline the potential options for microbiota modulation. As shown in murine models, probiotics inhibited tumor development, reduced tumor volume, and suppressed angiogenesis and metastasis. Moreover, modulation of an unfavorable microbiome might improve efficacy and reduce treatment-related toxicities, bringing clinical benefit to patients with metastatic cancer.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Beata Mladosievicova
- Institute of Pathological Physiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia;
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| |
Collapse
|
8
|
O'Meara CH, Jafri Z, Khachigian LM. Immune Checkpoint Inhibitors, Small-Molecule Immunotherapies and the Emerging Role of Neutrophil Extracellular Traps in Therapeutic Strategies for Head and Neck Cancer. Int J Mol Sci 2023; 24:11695. [PMID: 37511453 PMCID: PMC10380483 DOI: 10.3390/ijms241411695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized the treatment of many cancer types, including head and neck cancers (HNC). When checkpoint and partner proteins bind, these send an "off" signal to T cells, which prevents the immune system from destroying tumor cells. However, in HNC, and indeed many other cancers, more people do not respond and/or suffer from toxic effects than those who do respond. Hence, newer, more effective approaches are needed. The challenge to durable therapy lies in a deeper understanding of the complex interactions between immune cells, tumor cells and the tumor microenvironment. This will help develop therapies that promote lasting tumorlysis by overcoming T-cell exhaustion. Here we explore the strengths and limitations of current ICI therapy in head and neck squamous cell carcinoma (HNSCC). We also review emerging small-molecule immunotherapies and the growing promise of neutrophil extracellular traps in controlling tumor progression and metastasis.
Collapse
Affiliation(s)
- Connor H O'Meara
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Zuhayr Jafri
- Vascular Biology and Translational Research, School of Biomedical Sciences, UNSW Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, School of Biomedical Sciences, UNSW Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|