1
|
Xu HL, Gong TT, Song XJ, Chen Q, Bao Q, Yao W, Xie MM, Li C, Grzegorzek M, Shi Y, Sun HZ, Li XH, Zhao YH, Gao S, Wu QJ. Artificial Intelligence Performance in Image-Based Cancer Identification: Umbrella Review of Systematic Reviews. J Med Internet Res 2025; 27:e53567. [PMID: 40167239 PMCID: PMC12000792 DOI: 10.2196/53567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/30/2024] [Accepted: 11/11/2024] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Artificial intelligence (AI) has the potential to transform cancer diagnosis, ultimately leading to better patient outcomes. OBJECTIVE We performed an umbrella review to summarize and critically evaluate the evidence for the AI-based imaging diagnosis of cancers. METHODS PubMed, Embase, Web of Science, Cochrane, and IEEE databases were searched for relevant systematic reviews from inception to June 19, 2024. Two independent investigators abstracted data and assessed the quality of evidence, using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Systematic Reviews and Research Syntheses. We further assessed the quality of evidence in each meta-analysis by applying the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) criteria. Diagnostic performance data were synthesized narratively. RESULTS In a comprehensive analysis of 158 included studies evaluating the performance of AI algorithms in noninvasive imaging diagnosis across 8 major human system cancers, the accuracy of the classifiers for central nervous system cancers varied widely (ranging from 48% to 100%). Similarities were observed in the diagnostic performance for cancers of the head and neck, respiratory system, digestive system, urinary system, female-related systems, skin, and other sites. Most meta-analyses demonstrated positive summary performance. For instance, 9 reviews meta-analyzed sensitivity and specificity for esophageal cancer, showing ranges of 90%-95% and 80%-93.8%, respectively. In the case of breast cancer detection, 8 reviews calculated the pooled sensitivity and specificity within the ranges of 75.4%-92% and 83%-90.6%, respectively. Four meta-analyses reported the ranges of sensitivity and specificity in ovarian cancer, and both were 75%-94%. Notably, in lung cancer, the pooled specificity was relatively low, primarily distributed between 65% and 80%. Furthermore, 80.4% (127/158) of the included studies were of high quality according to the JBI Critical Appraisal Checklist, with the remaining studies classified as medium quality. The GRADE assessment indicated that the overall quality of the evidence was moderate to low. CONCLUSIONS Although AI shows great potential for achieving accelerated, accurate, and more objective diagnoses of multiple cancers, there are still hurdles to overcome before its implementation in clinical settings. The present findings highlight that a concerted effort from the research community, clinicians, and policymakers is required to overcome existing hurdles and translate this potential into improved patient outcomes and health care delivery. TRIAL REGISTRATION PROSPERO CRD42022364278; https://www.crd.york.ac.uk/PROSPERO/view/CRD42022364278.
Collapse
Affiliation(s)
- He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Jian Song
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Bao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Wei Yao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Meng-Meng Xie
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Li
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Marcin Grzegorzek
- Institute for Medical Informatics, University of Luebeck, Luebeck, Germany
| | - Yu Shi
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong-Zan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Han Li
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| |
Collapse
|
2
|
Podină N, Gheorghe EC, Constantin A, Cazacu I, Croitoru V, Gheorghe C, Balaban DV, Jinga M, Țieranu CG, Săftoiu A. Artificial Intelligence in Pancreatic Imaging: A Systematic Review. United European Gastroenterol J 2025; 13:55-77. [PMID: 39865461 PMCID: PMC11866320 DOI: 10.1002/ueg2.12723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 01/28/2025] Open
Abstract
The rising incidence of pancreatic diseases, including acute and chronic pancreatitis and various pancreatic neoplasms, poses a significant global health challenge. Pancreatic ductal adenocarcinoma (PDAC) for example, has a high mortality rate due to late-stage diagnosis and its inaccessible location. Advances in imaging technologies, though improving diagnostic capabilities, still necessitate biopsy confirmation. Artificial intelligence, particularly machine learning and deep learning, has emerged as a revolutionary force in healthcare, enhancing diagnostic precision and personalizing treatment. This narrative review explores Artificial intelligence's role in pancreatic imaging, its technological advancements, clinical applications, and associated challenges. Following the PRISMA-DTA guidelines, a comprehensive search of databases including PubMed, Scopus, and Cochrane Library was conducted, focusing on Artificial intelligence, machine learning, deep learning, and radiomics in pancreatic imaging. Articles involving human subjects, written in English, and published up to March 31, 2024, were included. The review process involved title and abstract screening, followed by full-text review and refinement based on relevance and novelty. Recent Artificial intelligence advancements have shown promise in detecting and diagnosing pancreatic diseases. Deep learning techniques, particularly convolutional neural networks (CNNs), have been effective in detecting and segmenting pancreatic tissues as well as differentiating between benign and malignant lesions. Deep learning algorithms have also been used to predict survival time, recurrence risk, and therapy response in pancreatic cancer patients. Radiomics approaches, extracting quantitative features from imaging modalities such as CT, MRI, and endoscopic ultrasound, have enhanced the accuracy of these deep learning models. Despite the potential of Artificial intelligence in pancreatic imaging, challenges such as legal and ethical considerations, algorithm transparency, and data security remain. This review underscores the transformative potential of Artificial intelligence in enhancing the diagnosis and treatment of pancreatic diseases, ultimately aiming to improve patient outcomes and survival rates.
Collapse
Affiliation(s)
- Nicoleta Podină
- “Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of GastroenterologyPonderas Academic HospitalBucharestRomania
| | | | - Alina Constantin
- Department of GastroenterologyPonderas Academic HospitalBucharestRomania
| | - Irina Cazacu
- Oncology DepartmentFundeni Clinical InstituteBucharestRomania
| | - Vlad Croitoru
- Oncology DepartmentFundeni Clinical InstituteBucharestRomania
| | - Cristian Gheorghe
- “Carol Davila” University of Medicine and PharmacyBucharestRomania
- Center of Gastroenterology and HepatologyFundeni Clinical InstituteBucharestRomania
| | - Daniel Vasile Balaban
- “Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of Gastroenterology“Carol Davila” Central Military University Emergency HospitalBucharestRomania
| | - Mariana Jinga
- “Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of Gastroenterology“Carol Davila” Central Military University Emergency HospitalBucharestRomania
| | - Cristian George Țieranu
- “Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of Gastroenterology and HepatologyElias Emergency University HospitalBucharestRomania
| | - Adrian Săftoiu
- “Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of GastroenterologyPonderas Academic HospitalBucharestRomania
- Department of Gastroenterology and HepatologyElias Emergency University HospitalBucharestRomania
| |
Collapse
|
3
|
Rousta F, Esteki A, Shalbaf A, Sadeghi A, Moghadam PK, Voshagh A. Application of artificial intelligence in pancreas endoscopic ultrasound imaging- A systematic review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 250:108205. [PMID: 38703435 DOI: 10.1016/j.cmpb.2024.108205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
The pancreas is a vital organ in digestive system which has significant health implications. It is imperative to evaluate and identify malignant pancreatic lesions promptly in light of the high mortality rate linked to such malignancies. Endoscopic Ultrasound (EUS) is a non-invasive precise technique to detect pancreas disorders, but it is highly operator dependent. Artificial intelligence (AI), including traditional machine learning (ML) and deep learning (DL) techniques can play a pivotal role to enhancing the performance of EUS regardless of operator. AI performs a critical function in the detection, classification, and segmentation of medical images. The utilization of AI-assisted systems has improved the accuracy and productivity of pancreatic analysis, including the detection of diverse pancreatic disorders (e.g., pancreatitis, masses, and cysts) as well as landmarks and parenchyma. This systematic review examines the rapidly developing domain of AI-assisted system in EUS of the pancreas. Its objective is to present a thorough study of the present research status and developments in this area. This paper explores the significant challenges of AI-assisted system in pancreas EUS imaging, highlights the potential of AI techniques in addressing these challenges, and suggests the scope for future research in domain of AI-assisted EUS systems.
Collapse
Affiliation(s)
- Fatemeh Rousta
- Department of Biomedical Engineering and Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esteki
- Department of Biomedical Engineering and Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Shalbaf
- Department of Biomedical Engineering and Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Sadeghi
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pardis Ketabi Moghadam
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardalan Voshagh
- Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
4
|
Rogers HK, Shah SL. Role of Endoscopic Ultrasound in Pancreatic Cancer Diagnosis and Management. Diagnostics (Basel) 2024; 14:1156. [PMID: 38893682 PMCID: PMC11171704 DOI: 10.3390/diagnostics14111156] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The emergence of endoscopic ultrasound (EUS) has significantly impacted the diagnosis and management of pancreatic cancer and its associated sequelae. While the definitive role of EUS for pancreatic cancer remains incompletely characterized by currently available guidelines, EUS undoubtedly offers high diagnostic accuracy, the precise staging of pancreatic neoplasms, and the ability to perform therapeutic and palliative interventions. However, current challenges to EUS include limited specialized expertise and variability in operator proficiency. As the technology and techniques continue to evolve and become more refined, EUS is poised to play an increasingly integral role in shaping pancreatic cancer care.
Collapse
Affiliation(s)
- Hayley K. Rogers
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shawn L. Shah
- Division of Digestive and Liver Diseases, Dallas VA Medical Center, VA North Texas Healthcare System, Dallas, TX 75216, USA
| |
Collapse
|