1
|
Galbraith K, Wu J, Sikkink K, Mohamed H, Reid D, Perez-Arreola M, Belton JM, Nomikou S, Melnyk S, Yang Y, Liechty BL, Jour G, Tsirigos A, Hermel DJ, Beck A, Sigal D, Dahl NA, Vibhakar R, Schmitt A, Snuderl M. Detection of Gene Fusions and Rearrangements in Formalin-Fixed, Paraffin-Embedded Solid Tumor Specimens Using High-Throughput Chromosome Conformation Capture. J Mol Diagn 2025; 27:346-359. [PMID: 40023492 PMCID: PMC12057137 DOI: 10.1016/j.jmoldx.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/02/2024] [Accepted: 01/28/2025] [Indexed: 03/04/2025] Open
Abstract
Chromosomal structural variants (SVs) are major contributors to cancer development. Although multiple methods exist for detecting SVs, they are limited in throughput, such as fluorescent in situ hybridization and targeted panels, and use RNA, which degrades in formalin-fixed, paraffin-embedded (FFPE) blocks and is unable to detect SVs that do not produce a fusion transcript. High-throughput chromosome conformation capture (Hi-C) is a DNA-based next-generation sequencing (NGS) method that preserves the spatial conformation of the genome, capturing long-range genetic interactions and SVs. Herein, a retrospective study analyzing 71 FFPE specimens from 10 different solid tumors was performed. Results showed high concordance (98%) with clinical fluorescent in situ hybridization and RNA NGS in detecting known SVs. Furthermore, Hi-C provided insight into the mechanism of SV formation, including chromothripsis and extrachromosomal DNA, and detected rearrangements between genes and regulatory regions, all of which are undetectable by RNA NGS. Lastly, SVs were detected in 71% of cases in which previous clinical methods failed to identify a driver. Of these, 14% were clinically actionable based on current medical guidelines, and an additional 14% were not in medical guidelines but involve targetable biomarkers. Current data suggest that Hi-C is a robust and accurate method for genome-wide SV analyses from FFPE tissue and can be incorporated into current clinical NGS workflows.
Collapse
Affiliation(s)
- Kristyn Galbraith
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York.
| | - Jamin Wu
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York
| | | | - Hussein Mohamed
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York
| | - Derek Reid
- Arima Genomics, Inc., Carlsbad, California
| | | | | | | | | | - Yiying Yang
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York
| | - Benjamin L Liechty
- Department of Pathology, Weill Cornell School of Medicine, New York, New York
| | - George Jour
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York; Division of Precision Medicine, Department of Medicine, NYU School of Medicine, New York, New York; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, New York
| | - David J Hermel
- Scripps Clinic/Scripps Cancer Center, La Jolla, California
| | - Alyssa Beck
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Darren Sigal
- Scripps Clinic/Scripps Cancer Center, La Jolla, California
| | - Nathan A Dahl
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Rajeev Vibhakar
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Matija Snuderl
- Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York; Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York; Department of Pathology, NYU Langone Health, and NYU Grossman School of Medicine, New York, New York.
| |
Collapse
|
2
|
Song Y, Guan C, Zhang Y, Xu Y, Li P, Luo L, Feng C, Chen G. A novel CRISPR-Cas9 nickase-mediated rolling circle amplification (CRIRCA) technique for gene identification and quantitative analysis of extrachromosomal DNA. J Adv Res 2025:S2090-1232(25)00275-9. [PMID: 40274228 DOI: 10.1016/j.jare.2025.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
INTRODUCTION Extrachromosomal DNA (ecDNA) plays an important role in the initiation and progression of cancerous tumors. Although Circle-seq and other genetic technologies can be utilized for ecDNA analysis, they fail to provide multi-dimensional information from ecDNA, which is time-consuming and laborious. OBJECTIVES Herein, by combining the netlike rolling circle amplification (NRCA) with CRISPR, we developed a novel CRISPR-Cas9 nickase-mediated RCA (CRIRCA) technology that can meet the clinical analysis needs of ecDNA. METHODS Atomic force microscope (AFM) was applied to confirm the circular structure of the ecDNA. Agarose gel electrophoresis was performed to analyze the CRIRCA products. Fluorescent detection was applied to characterize the fluorescence signal of amplified products. qPCR and FISH techniques were applied to verify the CRIRCA results of gene identification of ecDNA. RESULTS Our data revealed that CRIRCA achieved more efficient signal amplification compared to traditional RCA methods, allowing it to sensitively analyze small amounts of ecDNA in single tumor cells. Utilizing computer-aided design, we successfully constructed the primer library and sgRNA library of oncogene in ecDNA, and adopted CRIRCA technology to identify the oncogenes of ecDNA in breast cancer cells. CONCLUSION Therefore, CRIRCA can simultaneously obtain the information from structure, sequence and quantitation of ecDNA. This work will fill the gap in the current research on the early monitoring of cancer targeting ecDNA, and provide support for the accurate diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Yuchen Song
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, PR China; Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Chaoyang Guan
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, PR China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yue Zhang
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yiming Xu
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Pengfei Li
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, PR China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, PR China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
3
|
Simpson KL, Rothwell DG, Blackhall F, Dive C. Challenges of small cell lung cancer heterogeneity and phenotypic plasticity. Nat Rev Cancer 2025:10.1038/s41568-025-00803-0. [PMID: 40211072 DOI: 10.1038/s41568-025-00803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 04/12/2025]
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine malignancy with ~7% 5-year overall survival reflecting early metastasis and rapid acquired chemoresistance. Immunotherapy briefly extends overall survival in ~15% cases, yet predictive biomarkers are lacking. Targeted therapies are beginning to show promise, with a recently approved delta-like ligand 3 (DLL3)-targeted therapy impacting the treatment landscape. The increased availability of patient-faithful models, accumulating human tumour biobanks and numerous comprehensive molecular profiling studies have collectively facilitated the mapping and understanding of substantial intertumoural and intratumoural heterogeneity. Beyond the almost ubiquitous loss of wild-type p53 and RB1, SCLC is characterized by heterogeneously mis-regulated expression of MYC family members, yes-associated protein 1 (YAP1), NOTCH pathway signalling, anti-apoptotic BCL2 and epigenetic regulators. Molecular subtypes are based on the neurogenic transcription factors achaete-scute homologue 1 (ASCL1) and neurogenic differentiation factor 1 (NEUROD1), the rarer non-neuroendocrine transcription factor POU class 2 homeobox 3 (POU2F3), and immune- and inflammation-related signatures. Furthermore, SCLC shows phenotypic plasticity, including neuroendocrine-to-non-neuroendocrine transition driven by NOTCH signalling, which is associated with disease progression, chemoresistance and immune modulation and, in mouse models, with metastasis. Although these features pose substantial challenges, understanding the molecular vulnerabilities of transcription factor subtypes, the functional relevance of plasticity and cell cooperation offer opportunities for personalized therapies informed by liquid and tissue biomarkers.
Collapse
Affiliation(s)
- Kathryn L Simpson
- SCLC Biology Group, Cancer Research UK Manchester Institute, Manchester, UK
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
| | - Dominic G Rothwell
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
| | - Fiona Blackhall
- CRUK Lung Cancer Centre of Excellence, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Medical Oncology, Christie Hospital National Health Service, Foundation Trust, Manchester, UK
| | - Caroline Dive
- SCLC Biology Group, Cancer Research UK Manchester Institute, Manchester, UK.
- CRUK National Biomarker Centre, University of Manchester, Manchester, UK.
- CRUK Lung Cancer Centre of Excellence, Manchester, UK.
| |
Collapse
|
4
|
Mjelle R, Castro Í, Aass KR. The viral landscape in metastatic solid cancers. Heliyon 2025; 11:e42548. [PMID: 40028540 PMCID: PMC11870251 DOI: 10.1016/j.heliyon.2025.e42548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/17/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Here, we analyze the viral landscape in blood and tissue from 4918 metastatic cancer patients across 38 solid cancer types from the Hartwig Medical Foundation (HMF) cohort, the largest pan-cancer study on metastatic cancer. Using a coverage-based filtering approach, we detected 25 unique viral genera across 32 different cancer types, with a total of 747 unique virus-positive tissue samples. We detected 336 virus-positive blood samples across 29 cancer types, dominated by Torque teno virus and Alphatorquevirus. The tissue samples were dominated by Alphapapillomavirus and Roseolovirus. Alphapapillomavirus was significantly enriched in genital, anal, and colorectal cancers and was associated with host mutational signatures and transcriptional programs related to immunity and DNA repair. Host genes with Alphapapillomavirus integration tended to be more highly expressed and samples with HPV integration had higher somatic mutation rates and higher number of extrachromosomal DNA elements. Alphapapillomavirus was also detected in a significant proportion of blood samples from cervix and anal cancers, suggesting a potential blood-based biomarker.
Collapse
Affiliation(s)
- Robin Mjelle
- Department of Cancer and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pathology, St.Olavs Hospital, Trondheim, Norway
| | | | - Kristin Roseth Aass
- Department of Cancer and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Irdianto SA, Dwiranti A, Bowolaksono A. Extrachromosomal circular DNA: a double-edged sword in cancer progression and age-related diseases. Hum Cell 2025; 38:58. [PMID: 39969664 DOI: 10.1007/s13577-025-01178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025]
Abstract
Extrachromosomal circular DNA (eccDNA) is a fascinating form of genetic material found outside the usual chromosomal DNA in eukaryotic cells, including humans. Since its discovery in the 1960s, eccDNA has been linked to critical roles in cancer progression and age-related diseases. This review thoroughly explores eccDNA, covering its types, how it forms, and its significant impact on diseases, particularly cancer. EccDNA, especially in its extrachromosomal DNA (ecDNA) form, contributes to the genetic diversity of tumour cells, helping them evolve quickly and resist treatments. Beyond cancer, eccDNA is also connected to age-related conditions like Werner syndrome, amyotrophic lateral sclerosis (ALS), and type 2 diabetes mellitus (T2DM), where it may affect genomic stability and disease development. The potential of eccDNA as a biomarker for predicting disease outcomes and as a target for new treatments is also highlighted. This review aims to deepen our understanding of eccDNA and inspire further research into its roles in human health and disease, paving the way for innovative diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Shadira Anindieta Irdianto
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Astari Dwiranti
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
- Institute for Advanced Sustainable Materials Research and Technology (INA-SMART), Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok, 16424, Indonesia
| | - Anom Bowolaksono
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia.
| |
Collapse
|
6
|
Behrouzi R, Clipson A, Simpson KL, Blackhall F, Rothwell DG, Dive C, Mouliere F. Cell-free and extrachromosomal DNA profiling of small cell lung cancer. Trends Mol Med 2025; 31:64-78. [PMID: 39232927 DOI: 10.1016/j.molmed.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Small cell lung cancer (SCLC) is highly aggressive with poor prognosis. Despite a relative prevalence of circulating tumour DNA (ctDNA) in SCLC, liquid biopsies are not currently implemented, unlike non-SCLC where cell-free DNA (cfDNA) mutation profiling in the blood has utility for guiding targeted therapies and assessing minimal residual disease. cfDNA methylation profiling is highly sensitive for SCLC detection and holds promise for disease monitoring and molecular subtyping; cfDNA fragmentation profiling has also demonstrated clinical potential. Extrachromosomal DNA (ecDNA), that is often observed in SCLC, promotes tumour heterogeneity and chemotherapy resistance and can be detected in blood. We discuss how these cfDNA profiling modalities can be harnessed to expand the clinical applications of liquid biopsy in SCLC.
Collapse
Affiliation(s)
- Roya Behrouzi
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK; Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Alexandra Clipson
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Kathryn L Simpson
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK; Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Fiona Blackhall
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Dominic G Rothwell
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Caroline Dive
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK; Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Florent Mouliere
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
7
|
Fang J, Ying L, Ma Z, Yang Y, Zhu R, Su D. The distribution of the extrachromosomal DNA molecules in early lung cancer. Sci Prog 2024; 107:368504241276771. [PMID: 39228317 PMCID: PMC11375654 DOI: 10.1177/00368504241276771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Lung cancer (LC) is a highly lethal cancer worldwide. Research on the distribution and nature of extrachromosomal DNA molecules (EcDNAm) in early LC is scarce. In this study, after removing linear DNA and mitochondrial circular DNA, EcDNAm were extracted from two paired LC tissue samples and amplified using rolling circle amplification. High throughput extrachromosomal DNA (EcDNA) or RNA sequencing and bioinformatics analysis were subsequently utilized to explore the distribution and nature of the EcDNAm. Additionally, to elucidate the role of oncogenes with large EcDNAm sizes, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed. The RNA sequencing results revealed significant differences in certain genes between tumors and corresponding normal samples. At the same time, slight distinctions were observed between relapsed and non-relapsed tumor samples. The nature of the EcDNAm was compared between LC samples and matched normal samples. There was a tendency for the number of EcDNAm with longer size (EcDNA) and its containing driver oncogenes to be higher in cancer samples. Enrichment analysis of the cancer samples revealed enrichment in biological processes, such as positive regulation of protein localization, axon development, and in-utero embryonic development. This study highlights the universal distribution and characteristics of EcDNAm in early LC. Moreover, our work fills the investigation of the EcDNAm gap and future studies should focus on the application of EcDNA as a potential biomarker in patients with early LC.
Collapse
Affiliation(s)
- Jianfei Fang
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Lisha Ying
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zhengxiao Ma
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Ying Yang
- The Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
| | - Rui Zhu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Chakraborty S, Sharma G, Karmakar S, Banerjee S. Multi-OMICS approaches in cancer biology: New era in cancer therapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167120. [PMID: 38484941 DOI: 10.1016/j.bbadis.2024.167120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/01/2024]
Abstract
Innovative multi-omics frameworks integrate diverse datasets from the same patients to enhance our understanding of the molecular and clinical aspects of cancers. Advanced omics and multi-view clustering algorithms present unprecedented opportunities for classifying cancers into subtypes, refining survival predictions and treatment outcomes, and unravelling key pathophysiological processes across various molecular layers. However, with the increasing availability of cost-effective high-throughput technologies (HTT) that generate vast amounts of data, analyzing single layers often falls short of establishing causal relations. Integrating multi-omics data spanning genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes offers unique prospects to comprehend the underlying biology of complex diseases like cancer. This discussion explores algorithmic frameworks designed to uncover cancer subtypes, disease mechanisms, and methods for identifying pivotal genomic alterations. It also underscores the significance of multi-omics in tumor classifications, diagnostics, and prognostications. Despite its unparalleled advantages, the integration of multi-omics data has been slow to find its way into everyday clinics. A major hurdle is the uneven maturity of different omics approaches and the widening gap between the generation of large datasets and the capacity to process this data. Initiatives promoting the standardization of sample processing and analytical pipelines, as well as multidisciplinary training for experts in data analysis and interpretation, are crucial for translating theoretical findings into practical applications.
Collapse
Affiliation(s)
- Sohini Chakraborty
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Gaurav Sharma
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sricheta Karmakar
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
9
|
Cui X, Li Y, Zhang C, Qi Y, Sun Y, Li W. Multiple HPV integration mode in the cell lines based on long-reads sequencing. Front Microbiol 2023; 14:1294146. [PMID: 38169727 PMCID: PMC10758443 DOI: 10.3389/fmicb.2023.1294146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Background The integration of human papillomavirus (HPV) is closely related to the occurrence of cervical cancer. However, little is known about the complete state of HPV integration into the host genome. Methods In this study, three HPV-positive cell lines, HeLa, SiHa, and CaSki, were subjected to NANOPORE long-read sequencing to detect HPV integration. Analysis of viral integration patterns using independently developed software (HPV-TSD) yielded multiple complete integration patterns for the three HPV cell lines. Results We found distinct differences between the integration patterns of HPV18 and HPV16. Furthermore, the integration characteristics of the viruses were significantly different, even though they all belonged to HPV16 integration. The HPV integration in the CaSki cells was relatively complex. The HPV18 integration status in HeLa cells was the dominant, whereas the percentage of integrated HPV 16 in SiHa and CaSki cells was significantly lower. In addition, the virus sequences in the HeLa cells were incomplete and existed in an integrated state. We also identified a large number of tandem repeats in HPV16 and HPV18 integration. Our study not only clarified the feasibility of high-throughput long-read sequencing in the study of HPV integration, but also explored a variety of HPV integration models, and confirmed that viral integration is an important form of HPV in cell lines. Conclusion Elucidating HPV integration patterns will provide critical guidance for developing a detection algorithm for HPV integration, as well as the application of virus integration in clinical practice and drug research and development.
Collapse
Affiliation(s)
- Xiaofang Cui
- Jining Medical University, Jining, Shandong, China
- Department of Bioinformatics, School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | | | - Chuanpeng Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yanwei Qi
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | | | - Weiyang Li
- Jining Medical University, Jining, Shandong, China
- Department of Bioinformatics, School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|