1
|
Alfei S, Torazza C, Bacchetti F, Signorello MG, Passalacqua M, Domenicotti C, Marengo B. Tri-Phenyl-Phosphonium-Based Nano Vesicles: A New In Vitro Nanomolar-Active Weapon to Eradicate PLX-Resistant Melanoma Cells. Int J Mol Sci 2025; 26:3227. [PMID: 40244045 PMCID: PMC11990052 DOI: 10.3390/ijms26073227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Cutaneous metastatic melanoma (CMM) is the most aggressive form of skin cancer, with characteristics including a poor prognosis, chemotherapy-induced secondary tumorigenesis, and the emergence of drug resistance. Our recent study demonstrated that triphenyl phosphonium (TPP)-based nanovesicles (BPPB), which have amphiphilic properties, exert potent ROS-dependent anticancer effect against PLX4032 (PLX)-sensitive MeOV BRAFV600E and MeTRAV BRAFV600D mutant cell lines, evidencing more marked efficacy on MeOV cells. Here, taking advantage of this in vitro model, the antitumoral effect of BPPB was tested on PLX-resistant (PLX-R) MeOV BRAFV600E and MeTRAV BRAFV600D mutant cell lines to find a new potential strategy to fight melanoma therapy resistance. Specifically, we investigated both its effects on cell viability in dose- and time-dependent experiments and those on ROS generation. Our results show that BPPB exerted strong antiproliferative effects, regardless of their acquired resistance of cells to PLX, that correlated with ROS overproduction for 24 h treatments only. Moreover, in terms of cell viability, PLX-R MeTRAV cells demonstrated a remarkably higher tolerance to 24 h BPPB treatment than PLX-R MeOV. On the contrary, BPPB exposure for longer periods induced similar responses in both cell lines (IC50 = 87.8-106.5 nM on MeOV and 81.0-140.6 nM on MeTRAV). Notably, BPPB cytotoxicity on non-tumorigenic human keratinocytes (HaCaT) was low, thus establishing that BPPB is appreciably selective for CMM cells, allowing for selectivity index values (SIs) up to 11.58. Furthermore, the BPPB concentration causing 50% hemolysis (HC50) was found to be 16-173 and 4-192-fold higher than the IC50 calculated for PLX-R MeOV and MeTRAV cells, respectively. Correlation studies established that BPPB exerts cytotoxic effects on PLX-R MeOV and MeTRAV cells by a time-dependent mechanism, while a concentration-dependent mechanism was observed only at 24 h of exposure. Finally, a ROS-dependent mechanism can be assumed only in PLX-R MeTRAV cells in 72 h treatment.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.T.); (F.B.)
| | - Carola Torazza
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.T.); (F.B.)
| | - Francesca Bacchetti
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.T.); (F.B.)
| | - Maria Grazia Signorello
- Biochemistry Laboratory, Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy;
| | - Mario Passalacqua
- Biochemistry Section, Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy;
- Centro 3R, Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
| | - Cinzia Domenicotti
- Centro 3R, Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy
| | - Barbara Marengo
- Centro 3R, Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy
| |
Collapse
|
2
|
Alfei S, Zuccari G, Athanassopoulos CM, Domenicotti C, Marengo B. Strongly ROS-Correlated, Time-Dependent, and Selective Antiproliferative Effects of Synthesized Nano Vesicles on BRAF Mutant Melanoma Cells and Their Hyaluronic Acid-Based Hydrogel Formulation. Int J Mol Sci 2024; 25:10071. [PMID: 39337557 PMCID: PMC11432396 DOI: 10.3390/ijms251810071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Cutaneous metastatic melanoma (CMM) is the most aggressive form of skin cancer with a poor prognosis. Drug-induced secondary tumorigenesis and the emergency of drug resistance worsen an already worrying scenario, thus rendering urgent the development of new treatments not dealing with mutable cellular processes. Triphenyl phosphonium salts (TPPSs), in addiction to acting as cytoplasmic membrane disruptors, are reported to be mitochondria-targeting compounds, exerting anticancer effects mainly by damaging their membranes and causing depolarization, impairing mitochondria functions and their DNA, triggering oxidative stress (OS), and priming primarily apoptotic cell death. TPP-based bola amphiphiles are capable of self-forming nanoparticles (NPs) with enhanced biological properties, as commonly observed for nanomaterials. Already employed in several other biomedical applications, the per se selective potent antibacterial effects of a TPP bola amphiphile have only recently been demonstrated on 50 multidrug resistant (MDR) clinical superbugs, as well as its exceptional and selective anticancer properties on sensitive and MDR neuroblastoma cells. Here, aiming at finding new molecules possibly developable as new treatments for counteracting CMM, the effects of this TPP-based bola amphiphile (BPPB) have been investigated against two BRAF mutants CMM cell lines (MeOV and MeTRAV) with excellent results (even IC50 = 49 nM on MeOV after 72 h treatment). With these findings and considering the low cytotoxicity of BPPB against different mammalian non-tumoral cell lines and red blood cells (RBCs, selectivity indexes up to 299 on MeOV after 72 h treatment), the possible future development of BPPB as topical treatment for CMM lesions was presumed. With this aim, a biodegradable hyaluronic acid (HA)-based hydrogel formulation (HA-BPPB-HG) was prepared without using any potentially toxic crosslinking agents simply by dispersing suitable amounts of the two ingredients in water and sonicating under gentle heating. HA-BPPB-HA was completely characterized, with promising outcomes such as high swelling capability, high porosity, and viscous elastic rheological behavior.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| | | | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
3
|
Uslu C, Kapan E, Lyakhovich A. Cancer resistance and metastasis are maintained through oxidative phosphorylation. Cancer Lett 2024; 587:216705. [PMID: 38373691 DOI: 10.1016/j.canlet.2024.216705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024]
Abstract
Malignant tumors have increased energy requirements due to growth, differentiation or response to stress. A significant number of studies in recent years have described upregulation of mitochondrial genes responsible for oxidative phosphorylation (OXPHOS) in some tumors. Although OXPHOS is replaced by glycolysis in some tumors (Warburg effect), both processes can occur simultaneously during the evolution of the same malignancies. In particular, chemoresistant and/or cancer stem cells appear to find a way to activate OXPHOS and metastasize. In this paper, we discuss recent work showing upregulation of OXPHOS in chemoresistant tumors and cell models. In addition, we show an inverse correlation of OXPHOS gene expression with the survival time of cancer patients after chemotherapy and discuss combination therapies for resistant tumors.
Collapse
Affiliation(s)
- Cemile Uslu
- Sabanci University, Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Turkey
| | - Eda Kapan
- Sabanci University, Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Turkey
| | - Alex Lyakhovich
- Sabanci University, Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Turkey.
| |
Collapse
|
4
|
Valenti GE, Roveri A, Venerando R, Menichini P, Monti P, Tasso B, Traverso N, Domenicotti C, Marengo B. PTC596-Induced BMI-1 Inhibition Fights Neuroblastoma Multidrug Resistance by Inducing Ferroptosis. Antioxidants (Basel) 2023; 13:3. [PMID: 38275623 PMCID: PMC10812464 DOI: 10.3390/antiox13010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Neuroblastoma (NB) is a paediatric cancer with noteworthy heterogeneity ranging from spontaneous regression to high-risk forms that are characterised by cancer relapse and the acquisition of drug resistance. The most-used anticancer drugs exert their cytotoxic effect by inducing oxidative stress, and long-term therapy has been demonstrated to cause chemoresistance by enhancing the antioxidant response of NB cells. Taking advantage of an in vitro model of multidrug-resistant (MDR) NB cells, characterised by high levels of glutathione (GSH), the overexpression of the oncoprotein BMI-1, and the presence of a mutant P53 protein, we investigated a new potential strategy to fight chemoresistance. Our results show that PTC596, an inhibitor of BMI-1, exerted a high cytotoxic effect on MDR NB cells, while PRIMA-1MET, a compound able to reactivate mutant P53, had no effect on the viability of MDR cells. Furthermore, both PTC596 and PRIMA-1MET markedly reduced the expression of epithelial-mesenchymal transition proteins and limited the clonogenic potential and the cancer stemness of MDR cells. Of particular interest is the observation that PTC596, alone or in combination with PRIMA-1MET and etoposide, significantly reduced GSH levels, increased peroxide production, stimulated lipid peroxidation, and induced ferroptosis. Therefore, these findings suggest that PTC596, by inhibiting BMI-1 and triggering ferroptosis, could be a promising approach to fight chemoresistance.
Collapse
Affiliation(s)
- Giulia Elda Valenti
- Department of Experimental Medicine, General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (N.T.); (B.M.)
| | - Antonella Roveri
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy; (A.R.); (R.V.)
| | - Rina Venerando
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy; (A.R.); (R.V.)
| | - Paola Menichini
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (P.M.); (P.M.)
| | - Paola Monti
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (P.M.); (P.M.)
| | - Bruno Tasso
- Department of Pharmacy, University of Genoa, 16148 Genoa, Italy;
| | - Nicola Traverso
- Department of Experimental Medicine, General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (N.T.); (B.M.)
| | - Cinzia Domenicotti
- Department of Experimental Medicine, General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (N.T.); (B.M.)
| | - Barbara Marengo
- Department of Experimental Medicine, General Pathology Section, University of Genoa, 16132 Genoa, Italy; (G.E.V.); (N.T.); (B.M.)
| |
Collapse
|
5
|
Alfei S, Milanese M, Brullo C, Valenti GE, Domenicotti C, Russo E, Marengo B. Antiproliferative Imidazo-Pyrazole-Based Hydrogel: A Promising Approach for the Development of New Treatments for PLX-Resistant Melanoma. Pharmaceutics 2023; 15:2425. [PMID: 37896185 PMCID: PMC10610107 DOI: 10.3390/pharmaceutics15102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Aiming at developing a dermal formulation against melanoma, the synthesized imidazo-pyrazoles 2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole-7-carboxylic acid (3-methoxy-4-phenoxy-benzylidene)-hydrazide (4G) and 2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole-7-carboxylic acid (4-benzyloxy-3-methoxy-benzylidene)-hydrazide (4I) were screened on patient-isolated melanoma cells (MEOV NT) and on Vemurafenib (PLX4032)-resistant (MEOV PLX-R) ones. Since 4I on MEOV PLX-R cells was 1.4-fold more effective than PLX, a hydrogel formulation containing 4I (R4HG-4I) was prepared in parallel with an empty R4-based hydrogel (R4HG) using a synthesized antibacterial resin (R4) as gelling agent. Thanks to its high hydrophilicity, porosity (85%), and excellent swelling capability (552%), R4 allowed to achieve R4HG and R4HG-4I with high equilibrium degree of swelling (EDS) and equilibrium water content (EWC). Chemometric-assisted ATR-FTIR analyses confirmed the chemical structure of swollen and fully dried (R4HG-D and R4HG-4I-D) hydrogels. The morphology of R4HG-D and R4HG-4I-D was examined by optical microscopy and SEM, while UV-vis analyses were carried out to obtain the drug loading (DL%) and the encapsulation efficiency (EE%) of R4HG-4I. Potentiometric titrations were performed to determine the equivalents of NH3+ in both R4HG and R4HG-4I. The swelling and water release profiles of both materials and related kinetics were assessed by equilibrium swelling rate and water loss studies, respectively, while their biodegradability over time was assessed by in vitro degradation experiments determining their mass loss. Rheological experiments established that both R4HG and R4HG-4I are shear-thinning Bingham pseudoplastic fluids with low yield stress, thus assuring easy spreadability in a future topical application. Release studies evidenced a sustained and quantitative release of 4I governed mainly by diffusion. Upon favorable results from further experiments in a more realistic 3D model of melanoma, R4HG-4I could represent a starting point to develop new topical therapeutic options to adjuvate the treatments of melanoma cells also when resistant to currently available drugs.
Collapse
Affiliation(s)
- Silvana Alfei
- Section of Chemistry and Pharmaceutical and Food Technologies, Department of Pharmacy, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy;
| | - Marco Milanese
- Section of Chemistry and Pharmaceutical and Food Technologies, Department of Pharmacy, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy;
| | - Chiara Brullo
- Section of Medicinal Chemistry and Cosmetic Product, Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (C.B.); (E.R.)
| | - Giulia Elda Valenti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (G.E.V.); (C.D.)
| | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (G.E.V.); (C.D.)
| | - Eleonora Russo
- Section of Medicinal Chemistry and Cosmetic Product, Department of Pharmacy (DIFAR), University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (C.B.); (E.R.)
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (G.E.V.); (C.D.)
| |
Collapse
|