1
|
Lo Mastro A, Grassi E, Berritto D, Russo A, Reginelli A, Guerra E, Grassi F, Boccia F. Artificial intelligence in fracture detection on radiographs: a literature review. Jpn J Radiol 2025; 43:551-585. [PMID: 39538068 DOI: 10.1007/s11604-024-01702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Fractures are one of the most common reasons of admission to emergency department affecting individuals of all ages and regions worldwide that can be misdiagnosed during radiologic examination. Accurate and timely diagnosis of fracture is crucial for patients, and artificial intelligence that uses algorithms to imitate human intelligence to aid or enhance human performs is a promising solution to address this issue. In the last few years, numerous commercially available algorithms have been developed to enhance radiology practice and a large number of studies apply artificial intelligence to fracture detection. Recent contributions in literature have described numerous advantages showing how artificial intelligence performs better than doctors who have less experience in interpreting musculoskeletal X-rays, and assisting radiologists increases diagnostic accuracy and sensitivity, improves efficiency, and reduces interpretation time. Furthermore, algorithms perform better when they are trained with big data on a wide range of fracture patterns and variants and can provide standardized fracture identification across different radiologist, thanks to the structured report. In this review article, we discuss the use of artificial intelligence in fracture identification and its benefits and disadvantages. We also discuss its current potential impact on the field of radiology and radiomics.
Collapse
Affiliation(s)
- Antonio Lo Mastro
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Enrico Grassi
- Department of Orthopaedics, University of Florence, Florence, Italy
| | - Daniela Berritto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Russo
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alfonso Reginelli
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Egidio Guerra
- Emergency Radiology Department, "Policlinico Riuniti Di Foggia", Foggia, Italy
| | - Francesca Grassi
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Boccia
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
2
|
Tang Y, Su YX, Zheng JM, Zhuo ML, Qian QF, Shen QL, Lin P, Chen ZK. Radiogenomic analysis for predicting lymph node metastasis and molecular annotation of radiomic features in pancreatic cancer. J Transl Med 2024; 22:690. [PMID: 39075486 PMCID: PMC11288107 DOI: 10.1186/s12967-024-05479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND To provide a preoperative prediction model for lymph node metastasis in pancreatic cancer patients and provide molecular information of key radiomic features. METHODS Two cohorts comprising 151 and 54 pancreatic cancer patients were included in the analysis. Radiomic features from the tumor region of interests were extracted by using PyRadiomics software. We used a framework that incorporated 10 machine learning algorithms and generated 77 combinations to construct radiomics-based models for lymph node metastasis prediction. Weighted gene coexpression network analysis (WGCNA) was subsequently performed to determine the relationships between gene expression levels and radiomic features. Molecular pathways enrichment analysis was performed to uncover the underlying molecular features. RESULTS Patients in the in-house cohort (mean age, 61.3 years ± 9.6 [SD]; 91 men [60%]) were separated into training (n = 105, 70%) and validation (n = 46, 30%) cohorts. A total of 1,239 features were extracted and subjected to machine learning algorithms. The 77 radiomic models showed moderate performance for predicting lymph node metastasis, and the combination of the StepGBM and Enet algorithms had the best performance in the training (AUC = 0.84, 95% CI = 0.77-0.91) and validation (AUC = 0.85, 95% CI = 0.73-0.98) cohorts. We determined that 15 features were core variables for lymph node metastasis. Proliferation-related processes may respond to the main molecular alterations underlying these features. CONCLUSIONS Machine learning-based radiomics could predict the status of lymph node metastasis in pancreatic cancer, which is associated with proliferation-related alterations.
Collapse
Affiliation(s)
- Yi Tang
- Department of Medical Ultrasound, Fujian Medical University Union Hospital, 29 Xinquan road, Fuzhou, China
| | - Yi-Xi Su
- Department of Medical Ultrasound, Fujian Medical University Union Hospital, 29 Xinquan road, Fuzhou, China
| | - Jin-Mei Zheng
- Department of Radiology, Fujian Medical University Union Hospital, 29 Xinquan road, Fuzhou, China
| | - Min-Ling Zhuo
- Department of Medical Ultrasound, Fujian Medical University Union Hospital, 29 Xinquan road, Fuzhou, China
| | - Qing-Fu Qian
- Department of Medical Ultrasound, Fujian Medical University Union Hospital, 29 Xinquan road, Fuzhou, China
| | - Qing-Ling Shen
- Department of Medical Ultrasound, Fujian Medical University Union Hospital, 29 Xinquan road, Fuzhou, China
| | - Peng Lin
- Department of Medical Ultrasound, Fujian Medical University Union Hospital, 29 Xinquan road, Fuzhou, China.
| | - Zhi-Kui Chen
- Department of Medical Ultrasound, Fujian Medical University Union Hospital, 29 Xinquan road, Fuzhou, China.
| |
Collapse
|
3
|
Mukund A, Afridi MA, Karolak A, Park MA, Permuth JB, Rasool G. Pancreatic Ductal Adenocarcinoma (PDAC): A Review of Recent Advancements Enabled by Artificial Intelligence. Cancers (Basel) 2024; 16:2240. [PMID: 38927945 PMCID: PMC11201559 DOI: 10.3390/cancers16122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) remains one of the most formidable challenges in oncology, characterized by its late detection and poor prognosis. Artificial intelligence (AI) and machine learning (ML) are emerging as pivotal tools in revolutionizing PDAC care across various dimensions. Consequently, many studies have focused on using AI to improve the standard of PDAC care. This review article attempts to consolidate the literature from the past five years to identify high-impact, novel, and meaningful studies focusing on their transformative potential in PDAC management. Our analysis spans a broad spectrum of applications, including but not limited to patient risk stratification, early detection, and prediction of treatment outcomes, thereby highlighting AI's potential role in enhancing the quality and precision of PDAC care. By categorizing the literature into discrete sections reflective of a patient's journey from screening and diagnosis through treatment and survivorship, this review offers a comprehensive examination of AI-driven methodologies in addressing the multifaceted challenges of PDAC. Each study is summarized by explaining the dataset, ML model, evaluation metrics, and impact the study has on improving PDAC-related outcomes. We also discuss prevailing obstacles and limitations inherent in the application of AI within the PDAC context, offering insightful perspectives on potential future directions and innovations.
Collapse
Affiliation(s)
- Ashwin Mukund
- Department of Machine Learning, Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA; (A.M.); (A.K.)
| | - Muhammad Ali Afridi
- School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan;
| | - Aleksandra Karolak
- Department of Machine Learning, Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA; (A.M.); (A.K.)
| | - Margaret A. Park
- Departments of Cancer Epidemiology and Gastrointestinal Oncology, Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA; (M.A.P.); (J.B.P.)
| | - Jennifer B. Permuth
- Departments of Cancer Epidemiology and Gastrointestinal Oncology, Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA; (M.A.P.); (J.B.P.)
| | - Ghulam Rasool
- Department of Machine Learning, Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA; (A.M.); (A.K.)
| |
Collapse
|
4
|
Anghel C, Grasu MC, Anghel DA, Rusu-Munteanu GI, Dumitru RL, Lupescu IG. Pancreatic Adenocarcinoma: Imaging Modalities and the Role of Artificial Intelligence in Analyzing CT and MRI Images. Diagnostics (Basel) 2024; 14:438. [PMID: 38396476 PMCID: PMC10887967 DOI: 10.3390/diagnostics14040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands out as the predominant malignant neoplasm affecting the pancreas, characterized by a poor prognosis, in most cases patients being diagnosed in a nonresectable stage. Image-based artificial intelligence (AI) models implemented in tumor detection, segmentation, and classification could improve diagnosis with better treatment options and increased survival. This review included papers published in the last five years and describes the current trends in AI algorithms used in PDAC. We analyzed the applications of AI in the detection of PDAC, segmentation of the lesion, and classification algorithms used in differential diagnosis, prognosis, and histopathological and genomic prediction. The results show a lack of multi-institutional collaboration and stresses the need for bigger datasets in order for AI models to be implemented in a clinically relevant manner.
Collapse
Affiliation(s)
- Cristian Anghel
- Faculty of Medicine, Department of Medical Imaging and Interventional Radiology, Carol Davila University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; (C.A.); (R.L.D.); (I.G.L.)
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; (D.A.A.); (G.-I.R.-M.)
| | - Mugur Cristian Grasu
- Faculty of Medicine, Department of Medical Imaging and Interventional Radiology, Carol Davila University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; (C.A.); (R.L.D.); (I.G.L.)
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; (D.A.A.); (G.-I.R.-M.)
| | - Denisa Andreea Anghel
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; (D.A.A.); (G.-I.R.-M.)
| | - Gina-Ionela Rusu-Munteanu
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; (D.A.A.); (G.-I.R.-M.)
| | - Radu Lucian Dumitru
- Faculty of Medicine, Department of Medical Imaging and Interventional Radiology, Carol Davila University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; (C.A.); (R.L.D.); (I.G.L.)
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; (D.A.A.); (G.-I.R.-M.)
| | - Ioana Gabriela Lupescu
- Faculty of Medicine, Department of Medical Imaging and Interventional Radiology, Carol Davila University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; (C.A.); (R.L.D.); (I.G.L.)
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; (D.A.A.); (G.-I.R.-M.)
| |
Collapse
|