1
|
Panaino CMV, Piccinini S, Andreassi MG, Bandini G, Borghini A, Borgia M, Di Naro A, Labate LU, Maggiulli E, Portaluri MGA, Gizzi LA. Very High-Energy Electron Therapy Toward Clinical Implementation. Cancers (Basel) 2025; 17:181. [PMID: 39857964 PMCID: PMC11763822 DOI: 10.3390/cancers17020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
The use of very high energy electron (VHEE) beams, with energies between 50 and 400 MeV, has drawn considerable interest in radiotherapy due to their deep tissue penetration, sharp beam edges, and low sensitivity to tissue density. VHEE beams can be precisely steered with magnetic components, positioning VHEE therapy as a cost-effective option between photon and proton therapies. However, the clinical implementation of VHEE therapy (VHEET) requires advances in several areas: developing compact, stable, and efficient accelerators; creating sophisticated treatment planning software; and establishing clinically validated protocols. In addition, the perspective of VHEE to access ultra-high dose-rate regime presents a promising avenue for the practical integration of FLASH radiotherapy of deep tumors and metastases with VHEET (FLASH-VHEET), enhancing normal tissue sparing while maintaining the inherent dosimetric advantages of VHEET. However, FLASH-VHEET systems require validation of time-dependent dose parameters, thus introducing additional technological challenges. Here, we discuss recent progress in VHEET research, focusing on both conventional and FLASH modalities, and covering key aspects including dosimetric properties, radioprotection, accelerator technology, beam focusing, radiobiological effects, and clinical outcomes. Furthermore, we comprehensively analyze initial VHEET in silico studies on coverage across various tumor sites.
Collapse
Affiliation(s)
- Costanza Maria Vittoria Panaino
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
| | - Simona Piccinini
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
| | - Maria Grazia Andreassi
- Institute of Clinical Physiology, National Research Council of Italy, 56124 Pisa, Italy; (M.G.A.); (A.B.)
| | - Gabriele Bandini
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
| | - Andrea Borghini
- Institute of Clinical Physiology, National Research Council of Italy, 56124 Pisa, Italy; (M.G.A.); (A.B.)
| | | | - Angelo Di Naro
- ASST Papa Giovanni XXIII Hospital, Radiotherapy, 24127 Bergamo, Italy; (A.D.N.); (M.G.A.P.)
| | - Luca Umberto Labate
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
- National Institute for Nuclear Physics, 56127 Pisa, Italy
| | | | | | - Leonida Antonio Gizzi
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
- National Institute for Nuclear Physics, 56127 Pisa, Italy
| |
Collapse
|
2
|
Giannini N, Gadducci G, Fuentes T, Gonnelli A, Di Martino F, Puccini P, Naso M, Pasqualetti F, Capaccioli S, Paiar F. Electron FLASH radiotherapy in vivo studies. A systematic review. Front Oncol 2024; 14:1373453. [PMID: 38655137 PMCID: PMC11035725 DOI: 10.3389/fonc.2024.1373453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
FLASH-radiotherapy delivers a radiation beam a thousand times faster compared to conventional radiotherapy, reducing radiation damage in healthy tissues with an equivalent tumor response. Although not completely understood, this radiobiological phenomenon has been proved in several animal models with a spectrum of all kinds of particles currently used in contemporary radiotherapy, especially electrons. However, all the research teams have performed FLASH preclinical studies using industrial linear accelerator or LINAC commonly employed in conventional radiotherapy and modified for the delivery of ultra-high-dose-rate (UHDRs). Unfortunately, the delivering and measuring of UHDR beams have been proved not to be completely reliable with such devices. Concerns arise regarding the accuracy of beam monitoring and dosimetry systems. Additionally, this LINAC totally lacks an integrated and dedicated Treatment Planning System (TPS) able to evaluate the internal dose distribution in the case of in vivo experiments. Finally, these devices cannot modify dose-time parameters of the beam relevant to the flash effect, such as average dose rate; dose per pulse; and instantaneous dose rate. This aspect also precludes the exploration of the quantitative relationship with biological phenomena. The dependence on these parameters need to be further investigated. A promising advancement is represented by a new generation of electron LINAC that has successfully overcome some of these technological challenges. In this review, we aim to provide a comprehensive summary of the existing literature on in vivo experiments using electron FLASH radiotherapy and explore the promising clinical perspectives associated with this technology.
Collapse
Affiliation(s)
- Noemi Giannini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Tuscany, Italy
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
| | - Giovanni Gadducci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Tuscany, Italy
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
| | - Taiusha Fuentes
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Tuscany, Italy
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
| | - Alessandra Gonnelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Tuscany, Italy
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
| | - Fabio Di Martino
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
- Unit of Medical Physics, Azienda Ospedaliero-Universitaria Pisana, Pisa, Tuscany, Italy
- National Institute of Nuclear Physics (INFN)-section of Pisa, Pisa, Tuscany, Italy
| | - Paola Puccini
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Tuscany, Italy
| | - Monica Naso
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Tuscany, Italy
| | - Francesco Pasqualetti
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Tuscany, Italy
| | - Simone Capaccioli
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
- Department of Physics, University of Pisa, Pisa, Tuscany, Italy
| | - Fabiola Paiar
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Tuscany, Italy
- Centro Pisano Multidisciplinare Sulla Ricerca e Implementazione Clinica Della Flash Radiotherapy (CPFR), University of Pisa, Pisa, Italy
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Tuscany, Italy
| |
Collapse
|