1
|
Brouns AJWM, Robbesom-van den Berge IJ, Ernst SM, Steendam CMJ, Woud WW, Wu L, Dingemans AMC, Hendriks LEL, van Driel M. Connecting the dots: (RANKL +) extracellular vesicle count in blood plasma in relation to bone metastases, skeletal related events and osimertinib treatment in patients with EGFR mutated non-small cell lung cancer. Transl Lung Cancer Res 2025; 14:761-774. [PMID: 40248741 PMCID: PMC12000961 DOI: 10.21037/tlcr-24-1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/24/2025] [Indexed: 04/19/2025]
Abstract
Background The biological mechanisms responsible for the different incidences of bone metastases in molecular subgroups of non-small cell lung cancer (NSCLC) are not identified. Extracellular vesicles (EVs) may play a role, as they are involved in organotrophic metastasis. Phosphorylation of epidermal growth factor receptor (EGFR) in exosomes possibly leads to an increase in receptor activator of nuclear factor κB ligand (RANKL) triggering osteoclastogenesis. In search for new biomarkers with focus on EVs and RANKL, we studied in plasma of patients with EGFR + NSCLC the associations between the total concentration of EVs, RANKL+ EVs, RANKL, and osteoprotegerin (OPG) protein levels, osimertinib treatment, presence of bone metastases and skeletal related events (SREs). Methods From the prospective biomarker cohort study START-TKI (NCT05221372), including patients with metastatic EGFR + NSCLC, we collected deep frozen plasma samples at initiation and during osimertinib treatment. Imaging flow cytometry (IFC) was used to determine the concentration of tetraspanin positive EVs and detection of RANKL on EVs. RANKL and OPG levels were measured by enzyme-linked immunosorbent assay (ELISA). Data on demographics, date of NSCLC diagnosis, date of initiation of osimertinib, presence of bone metastases and SREs were collected. Primary endpoint was the relation between (RANKL+) EV levels and bone metastases. Results Forty unique patients with in total 50 plasma samples (45% at initiation of osimertinib, 55% during osimertinib treatment) were included. Identification of EVs was possible in 38/40 patients, and determination of RANKL and OPG plasma levels in all samples. Of these 40 patients, 25 (63%) had bone metastases at sample collection. Both total EV and RANKL+ EV concentrations were significantly higher in samples at initiation of osimertinib compared to samples during treatment [mean ± standard deviation (SD), 6.3×1012±2.1×1012/mL plasma vs. 3.2×1012±1.9×1012/mL plasma, P≤0.001 for total EV concentrations; and 2.2×1010±9.3×109/mL plasma vs. 1.1×1010±8.0×109/mL plasma, P=0.001 for RANKL+ EVs]. Patients without a SRE had a significantly higher concentration of RANKL+ EVs compared to patients with an SRE (mean ± SD, 1.8×1010±1.1×1010/mL plasma vs. 1.1×1010±7.4×109/mL plasma, P=0.02). No association was found between the total EV concentration or RANKL+ EVs, plasma levels of OPG and RANKL and bone metastases. Conclusions No association was found between the presence of bone metastases and the total concentration of EVs, RANKL+ EVs, or plasma values of RANKL and OPG. In patients without SREs the concentration of RANKL+ EVs was significantly increased. Both the total EV and RANKL+ EV concentrations significantly decreased during osimertinib treatment. This opens new perspectives for the role of (RANKL+) EVs as prognostic biomarkers for EGFR + NSCLC disease progression and response to therapy.
Collapse
Affiliation(s)
- Anita J. W. M. Brouns
- Department of Respiratory Medicine, Zuyderland, Geleen, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- GROW-School for Oncology and Reproduction, Maastricht, The Netherlands
| | | | - Sophie M. Ernst
- Department of Respiratory Medicine, Erasmus Medical Center Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Christi M. J. Steendam
- Department of Respiratory Medicine, Erasmus Medical Center Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Wouter W. Woud
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, The Netherlands
| | - Liang Wu
- Erasmus MC Transplant Institute, Department of Internal Medicine, University Medical Center, Rotterdam, The Netherlands
| | - Anne-Marie C. Dingemans
- Department of Respiratory Medicine, Erasmus Medical Center Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Lizza E. L. Hendriks
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- GROW-School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Marjolein van Driel
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Lee YJ, Seo CW, Chae S, Lee CY, Kim SS, Shin YH, Park HM, Gho YS, Ryu S, Lee SH, Choi D. Metabolic Reprogramming Into a Glycolysis Phenotype Induced by Extracellular Vesicles Derived From Prostate Cancer Cells. Mol Cell Proteomics 2025; 24:100944. [PMID: 40089067 PMCID: PMC12008616 DOI: 10.1016/j.mcpro.2025.100944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025] Open
Abstract
Most cancer cells adopt a less efficient metabolic process of aerobic glycolysis with high level of glucose uptake followed by lactic acid production, known as the Warburg effect. This phenotypic transition enables cancer cells to achieve increased cellular survival and proliferation in a harsh low-oxygen tumor microenvironment. Also, the resulting acidic microenvironment causes inactivation of the immune system such as T-cell impairment that favors escape by immune surveillance. While lots of studies have revealed that tumor-derived EVs can deliver parental materials to adjacent cells and contribute to oncogenic reprogramming, their functionality in energy metabolism is not well addressed. In this study, we established prostate cancer cells PC-3AcT resistant to cellular death in an acidic culture medium driven by lactic acid. Quantitative proteomics between EVs derived from PC-3 and PC-3AcT cells identified 935 confident EV proteins. According to cellular adaptation to lactic acidosis, we revealed 159 regulated EV proteins related to energy metabolism, cellular shape, and extracellular matrix. These EVs contained a high abundance of glycolytic enzymes. In particular, PC-3AcT EVs were enriched with apolipoproteins including apolipoprotein B-100 (APOB). APOB on PC-3AcT EVs could facilitate their endocytic uptake depending on low density lipoprotein receptor of recipient PC-3 cells, encouraging increases of cellular proliferation and survival in acidic culture media via increased activity and expression of hexokinases and phosphofructokinase. The activation of recipient PC-3 cells can increase glucose consumption and ATP generation, representing an acquired metabolic reprogramming into the Warburg phenotype. Our study first revealed that EVs derived from prostate cancer cells could contribute to energy metabolic reprogramming and that the acquired metabolic phenotypic transition of recipient cells could favor cellular survival in tumor microenvironment.
Collapse
Affiliation(s)
- Yoon-Jin Lee
- Department of Biochemistry, Soonchunhyang University, College of Medicine, Cheonan, Republic of Korea
| | - Chul Won Seo
- Department of Biochemistry, Soonchunhyang University, College of Medicine, Cheonan, Republic of Korea
| | - Shinwon Chae
- Department of Biochemistry, Soonchunhyang University, College of Medicine, Cheonan, Republic of Korea
| | - Chang Yeol Lee
- Department of Biochemistry, Soonchunhyang University, College of Medicine, Cheonan, Republic of Korea
| | - Sang Soo Kim
- Department of Life Sciences, POSTECH, Pohang, Republic of Korea
| | - Yoon-Hee Shin
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hyun-Mee Park
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yong Song Gho
- Department of Life Sciences, POSTECH, Pohang, Republic of Korea
| | - Seongho Ryu
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Sang-Han Lee
- Department of Biochemistry, Soonchunhyang University, College of Medicine, Cheonan, Republic of Korea
| | - Dongsic Choi
- Department of Biochemistry, Soonchunhyang University, College of Medicine, Cheonan, Republic of Korea.
| |
Collapse
|
3
|
Luo T, Shen WK, Zhang CY, Song DD, Zhang XQ, Guo AY, Lei Q. TcEVdb: a database for T-cell-derived small extracellular vesicles from single-cell transcriptomes. Database (Oxford) 2025; 2025:baaf012. [PMID: 40036846 PMCID: PMC11885782 DOI: 10.1093/database/baaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/16/2025] [Accepted: 02/08/2025] [Indexed: 03/06/2025]
Abstract
T-Cell-derived extracellular vesicles (TcEVs) play key roles in immune regulation and tumor microenvironment modulation. However, the heterogeneity of TcEV remains poorly understood due to technical limitations of EV analysis and the lack of comprehensive data. To address this, we constructed TcEVdb, a comprehensive database that explores the expression and cluster of TcEV by the SEVtras method from T-cell single-cell RNA sequencing data. TcEVdb contains 277 265 EV droplets from 51 T-cell types across 221 samples from 21 projects, covering 9 tissue sources and 23 disease conditions. The database provides two main functional modules. The Browse module enables users to investigate EV secretion activity indices across samples, visualize TcEV clusters, analyze differentially expressed genes (DEGs) and pathway enrichment in TcEV subpopulations, and compare TcEV transcriptomes with their cellular origins. The Search module allows users to query specific genes across all datasets and visualize their expression distribution. Furthermore, our analysis of TcEV in diffuse large B-cell lymphoma revealed increased EV secretion in CD4+ T exhausted cells compared to healthy controls. Subsequent analyses identified distinct droplet clusters with differential expression genes, including clusters enriched for genes associated with cell motility and mitochondrial function. Overall, TcEVdb serves as a comprehensive resource for exploring the transcriptome of TcEV, which will contribute to advancements in EV-based diagnostics and therapeutics across a wide range of diseases. Database URL: https://guolab.wchscu.cn/TcEVdb.
Collapse
Affiliation(s)
- Tao Luo
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of thoracic surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Wen-Kang Shen
- Department of thoracic surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
| | - Chu-Yu Zhang
- Department of thoracic surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
| | - Dan-Dan Song
- Department of thoracic surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Xiu-Qing Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - An-Yuan Guo
- Department of thoracic surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Qian Lei
- Department of thoracic surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, #37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| |
Collapse
|
4
|
Liu W, Yang H, Liu X, Cai H, Bao Y, Jiang Y, Zhou W, Yuan J, Zhang Z, Fang X. Ultrasensitive Quantification of microRNA Copy Number in Individual Extracellular Vesicles Using DNA Tetrahedron-Based Single-Molecule Imaging. Anal Chem 2025; 97:4233-4240. [PMID: 39936597 DOI: 10.1021/acs.analchem.4c07068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The ultrasensitive detection of microRNAs (miRNAs) in extracellular vesicles (EVs) can accurately reflect the progress and metastasis of miRNA-mediated intercellular communication, providing an unprecedented opportunity for liquid biopsy. However, due to the low abundance and high heterogeneity of miRNAs in EVs, the ultrasensitive quantification and establishment of a distribution model for miRNA within native EVs remain challenging. Here, we have developed a DNA tetrahedron-based single-molecule fluorescence imaging strategy to overcome this challenge. The internalization efficiency of the probe was as high as 70% without disrupting the native structure of EVs, and combined with single-molecule fluorescence imaging, we achieved in situ imaging analysis of single-copy miRNA in individual EVs without amplification for the first time. A new distribution model for miRNAs has been revealed by statistical analysis of the copy number of miRNAs in EVs across multiple cell lines, characterized by low occupancy and a heterogeneous distribution. More importantly, we found that drug resistance cancer cells promote an increase in the number of drug resistance-related miRNAs within EVs without a corresponding increase in the number of EVs secreted, providing new insights into the EV miRNA sorting mechanisms. We anticipate that this technology will rapidly advance miRNA-mediated intercellular communication based on EVs.
Collapse
Affiliation(s)
- Weifeng Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Yang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaolong Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heqi Cai
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Bao
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yifei Jiang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jinghe Yuan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen Zhang
- Huairou Research Center, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
5
|
S BR, Dhar R, Devi A. Exosomes-mediated CRISPR/Cas delivery: A cutting-edge frontier in cancer gene therapy. Gene 2025; 944:149296. [PMID: 39884405 DOI: 10.1016/j.gene.2025.149296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Cancer is considered the second most common disease globally. In the past few decades, many approaches have been proposed for cancer treatment. One among those is targeted therapy using CRISPR/Cas system which plays a significant role in translational research through gene editing. However, due to its inability to cope with specific targeting, off-target effects, and limited tumor penetration, it is very challenging to use this approach in cancer studies. To increase its efficacy, CRISPR components are engineered into the extracellular vesicles (EVs), especially exosomes (a subpopulation of EVs). Exosomes have a significant role in cellular communication. Exosomes-based CRISPR/Cas system transport for gene editing enhances specificity, reduces off-target effects, and improves the therapeutic potential. This review highlights the role of exosomes and the CRISPR/Cas system in cancer research, exosomes-based CRISPR delivery for cancer treatment, and its future orientation.
Collapse
Affiliation(s)
- Bhavanisha Rithiga S
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India.
| |
Collapse
|
6
|
Shender VO, Anufrieva KS, Shnaider PV, Arapidi GP, Pavlyukov MS, Ivanova OM, Malyants IK, Stepanov GA, Zhuravlev E, Ziganshin RH, Butenko IO, Bukato ON, Klimina KM, Veselovsky VA, Grigorieva TV, Malanin SY, Aleshikova OI, Slonov AV, Babaeva NA, Ashrafyan LA, Khomyakova E, Evtushenko EG, Lukina MM, Wang Z, Silantiev AS, Nushtaeva AA, Kharlampieva DD, Lazarev VN, Lashkin AI, Arzumanyan LK, Petrushanko IY, Makarov AA, Lebedeva OS, Bogomazova AN, Lagarkova MA, Govorun VM. Therapy-induced secretion of spliceosomal components mediates pro-survival crosstalk between ovarian cancer cells. Nat Commun 2024; 15:5237. [PMID: 38898005 PMCID: PMC11187153 DOI: 10.1038/s41467-024-49512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Ovarian cancer often develops resistance to conventional therapies, hampering their effectiveness. Here, using ex vivo paired ovarian cancer ascites obtained before and after chemotherapy and in vitro therapy-induced secretomes, we show that molecules secreted by ovarian cancer cells upon therapy promote cisplatin resistance and enhance DNA damage repair in recipient cancer cells. Even a short-term incubation of chemonaive ovarian cancer cells with therapy-induced secretomes induces changes resembling those that are observed in chemoresistant patient-derived tumor cells after long-term therapy. Using integrative omics techniques, we find that both ex vivo and in vitro therapy-induced secretomes are enriched with spliceosomal components, which relocalize from the nucleus to the cytoplasm and subsequently into the extracellular vesicles upon treatment. We demonstrate that these molecules substantially contribute to the phenotypic effects of therapy-induced secretomes. Thus, SNU13 and SYNCRIP spliceosomal proteins promote therapy resistance, while the exogenous U12 and U6atac snRNAs stimulate tumor growth. These findings demonstrate the significance of spliceosomal network perturbation during therapy and further highlight that extracellular signaling might be a key factor contributing to the emergence of ovarian cancer therapy resistance.
Collapse
Affiliation(s)
- Victoria O Shender
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation.
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation.
| | - Ksenia S Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Polina V Shnaider
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Biology; Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Georgij P Arapidi
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, 141701, Russian Federation
| | - Marat S Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation
| | - Olga M Ivanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Irina K Malyants
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Chemical-Pharmaceutical Technologies and Biomedical Drugs, Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation
| | - Grigory A Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Evgenii Zhuravlev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation
| | - Ivan O Butenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Olga N Bukato
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Ksenia M Klimina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Vladimir A Veselovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | | | | | - Olga I Aleshikova
- National Medical Scientific Centre of Obstetrics, Gynaecology and Perinatal Medicine named after V.I. Kulakov, Moscow, 117198, Russian Federation
- Russian Research Center of Roentgenology and Radiology, Moscow, 117997, Russian Federation
| | - Andrey V Slonov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Nataliya A Babaeva
- National Medical Scientific Centre of Obstetrics, Gynaecology and Perinatal Medicine named after V.I. Kulakov, Moscow, 117198, Russian Federation
- Russian Research Center of Roentgenology and Radiology, Moscow, 117997, Russian Federation
| | - Lev A Ashrafyan
- National Medical Scientific Centre of Obstetrics, Gynaecology and Perinatal Medicine named after V.I. Kulakov, Moscow, 117198, Russian Federation
- Russian Research Center of Roentgenology and Radiology, Moscow, 117997, Russian Federation
| | | | - Evgeniy G Evtushenko
- Faculty of Chemistry; Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Maria M Lukina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Zixiang Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University; Jinan, 250012, Shandong, China
| | - Artemiy S Silantiev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Anna A Nushtaeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
| | - Daria D Kharlampieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Vassili N Lazarev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Arseniy I Lashkin
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Lorine K Arzumanyan
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Olga S Lebedeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Alexandra N Bogomazova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Vadim M Govorun
- Research Institute for Systems Biology and Medicine, Moscow, 117246, Russian Federation
| |
Collapse
|
7
|
De La Cruz-Sigüenza DA, Reyes-Grajeda JP, Velasco-Velázquez MA, Trejo-Becerril C, Pérez-Cárdenas E, Chávez-Blanco A, Taja-Chayeb L, Domínguez-Gómez G, Ramos-Godinez MP, González-Fierro A, Dueñas-González A. The non-vesicle cell-free DNA (cfDNA) induces cell transformation associated with horizontal DNA transfer. Mol Biol Rep 2024; 51:174. [PMID: 38252353 PMCID: PMC10803523 DOI: 10.1007/s11033-023-09016-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/25/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Cell-free DNA (cfDNA) is a source for liquid biopsy used for cancer diagnosis, therapy selection, and disease monitoring due to its non-invasive nature and ease of extraction. However, cfDNA also participates in cancer development and progression by horizontal transfer. In humans, cfDNA circulates complexed with extracellular vesicles (EV) and macromolecular complexes such as nucleosomes, lipids, and serum proteins. The present study aimed to demonstrate whether cfDNA not associated with EV induces cell transformation and tumorigenesis. METHODS Supernatant of the SW480 human colon cancer cell line was processed by ultracentrifugation to obtain a soluble fraction (SF) and a fraction associated with EV (EVF). Primary murine embryonic fibroblast cells (NIH3T3) underwent passive transfection with these fractions, and cell proliferation, cell cycle, apoptosis, cell transformation, and tumorigenic assays were performed. Next, cfDNA was analyzed by electronic microscopy, and horizontal transfer was assessed by human mutant KRAS in recipient cells via PCR and recipient cell internalization via fluorescence microscopy. RESULTS The results showed that the SF but not the EVF of cfDNA induced proliferative and antiapoptotic effects, cell transformation, and tumorigenesis in nude mice, which were reduced by digestion with DNAse I and proteinase K. These effects were associated with horizontal DNA transfer and cfDNA internalization into recipient cells. CONCLUSIONS The results suggest pro-tumorigenic effects of cfDNA in the SF that can be offset by enzyme treatment. Further exploration of the horizontal tumor progression phenomenon mediated by cfDNA is needed to determine whether its manipulation may play a role in cancer therapy.
Collapse
Affiliation(s)
- D A De La Cruz-Sigüenza
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan), Tlalpan, 14080, Mexico City, Mexico
| | - J P Reyes-Grajeda
- Protein Structure Laboratory, Instituto Nacional de Medicina Genomica (INMEGEN), Tlalpan, 14610, Mexico City, Mexico
| | - M A Velasco-Velázquez
- Department of Pharmacology, Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Coyoacan, 04510, Mexico City, Mexico
| | - C Trejo-Becerril
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan), Tlalpan, 14080, Mexico City, Mexico
| | - E Pérez-Cárdenas
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan), Tlalpan, 14080, Mexico City, Mexico
| | - A Chávez-Blanco
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan), Tlalpan, 14080, Mexico City, Mexico
| | - L Taja-Chayeb
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan), Tlalpan, 14080, Mexico City, Mexico
| | - G Domínguez-Gómez
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan), Tlalpan, 14080, Mexico City, Mexico
| | - M P Ramos-Godinez
- Department of Pathology, Instituto Nacional de Cancerología (INCan), Tlalpan, 14080, Mexico City, Mexico
| | - A González-Fierro
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan), Tlalpan, 14080, Mexico City, Mexico
| | - A Dueñas-González
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan), Tlalpan, 14080, Mexico City, Mexico.
- Department of Genomic Medicine and Environmental Toxicology, Institute of Biomedical Research, Universidad Nacional Autonoma de Mexico (UNAM), Av. Universidad 3004, Copilco Universidad, Coyoacan, 04510, Mexico City, Mexico.
| |
Collapse
|