1
|
Nanos C, Koukourakis IM, Mulita A, Avgousti R, Kouloulias V, Zygogianni A, Koukourakis MI. Lymphopenia Induced by Different Neoadjuvant Chemo-Radiotherapy Schedules in Patients with Rectal Cancer: Bone Marrow as an Organ at Risk. Curr Oncol 2024; 31:5774-5788. [PMID: 39451733 PMCID: PMC11506586 DOI: 10.3390/curroncol31100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Radiotherapy (RT)-induced lymphopenia may hinder the anti-tumor immune response. Preoperative RT or chemo-RT (CRT) for locally advanced rectal cancer is a standard therapeutic approach, while immunotherapy has been approved for mismatch repair-deficient rectal tumors. We retrospectively analyzed 98 rectal adenocarcinoma patients undergoing neoadjuvant CRT with VMAT (groups A, B, C) or IMRT (group D) techniques, with four different RT schemes: group A (n = 24): 25 Gy/5 Gy/fraction plus a 0.2 Gy/fraction rectal tumor boost; group B (n = 22): 34 Gy/3.4 Gy/fraction, with a 1-week treatment break after the first five RT fractions; group C (n = 20): 46 Gy/2 Gy/fraction plus a 0.2 Gy/fraction rectal tumor boost; group D (n = 32): 45 Gy/1.8 Gy/fraction followed by 5.4 Gy/1.8 Gy/fraction to the rectal tumor. We examined the effect of the time-corrected normalized total dose (NTD-T) to the BM on lymphopenia. Groups A and B (hypofractionated RT) had significantly higher lymphocyte counts (LCs) after RT than groups C and D (p < 0.03). An inverse association between the LCs after RT and NTD-T was demonstrated (p = 0.01). An NTD-T threshold of 30 Gy delivered to 30% of the BM volume emerged as a potential constraint for RT planning, which could be successfully integrated in the RT plan. Hypofractionated and accelerated RT schemes, and BM-sparing techniques may reduce lymphocytic damage and prove critical for immuno-RT clinical trials.
Collapse
Affiliation(s)
- Christos Nanos
- Department of Radiotherapy and Oncology, Medical School, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece; (C.N.); (A.M.)
| | - Ioannis M. Koukourakis
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (A.Z.)
| | - Admir Mulita
- Department of Radiotherapy and Oncology, Medical School, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece; (C.N.); (A.M.)
| | - Raphaela Avgousti
- Medical Physics Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Vassilios Kouloulias
- Department of Clinical Radiation Oncology, Attikon Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Anna Zygogianni
- Radiation Oncology Unit, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.M.K.); (A.Z.)
| | - Michael I. Koukourakis
- Department of Radiotherapy and Oncology, Medical School, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece; (C.N.); (A.M.)
| |
Collapse
|
2
|
Kuncman Ł, Pajdziński M, Smółka K, Bilski M, Socha J, Stando R, Peszyńska-Piorun M, Korab K, Jereczek-Fossa BA, Fijuth J. Early lymphocyte levels and low doses radiation exposure of lung predict lymphopenia in radiotherapy for lung cancer. Front Immunol 2024; 15:1426635. [PMID: 39148729 PMCID: PMC11324483 DOI: 10.3389/fimmu.2024.1426635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Radiation induced lymphopenia (RIL) deteriorate survival and diminishes the benefit of immune checkpoint inhibitors in combined treatment of lung cancer. Given the inconsistent data across various studies on the predictors of RIL, we aim to methodically elucidate these predictors and formulate a practical guide for clinicians. Methods We conducted observational cohort study in four tertiary cancer centers. Patients with non-small cell lung cancer and small cell lung cancer, without lymphopenia grade >1, who underwent standalone radiotherapy (RT) in minimum 15 fractions were eligible. Dose-volume parameters of structures and clinical factors were comprehensively analyzed using various predictors selection methods and statistical models (Linear Regressors, Elastic Net, Bayesian Regressors, Huber Regression, regression based on k-nearest neighbors, Gaussian Process Regressor, Decision Tree Regressor, Random Forest Regressor, eXtreme Gradient Boosting, Automated Machine Learning) and were ranked to predict lymphocytes count nadir (alc_nadir). Results Two hundred thirty eight patients (stage I-3.4%, II-17.6%, III-75.2%, IV-3.8%) who underwent RT to median dose of 60 Gy were analyzed. Median alc_nadir was 0.68K/mm3. The 60 feature sets were evaluated in 600 models (RMSE 0.27-0.41K/mm³). The most important features were baseline lymphocyte count (alc_1), mean lung_dose, lung v05, lung v10, heart v05 and effective dose to immune cells (edic). In patients with alc_1 ≤ 2.005K/mm3, median alc_nadir predictions were 0.54K/mm3 for lung_v05p > 51.8% and 0.76K/mm3 for lung_v05p ≤ 51.8%. Lymphopenia was rare in patients with alc_1 > 2.005K/mm3. Discussion RIL was most severe in patients with low early lymphocyte counts, primarily triggered by low RT doses in the heart and lungs.
Collapse
Affiliation(s)
- Łukasz Kuncman
- Department of Radiotherapy, Medical University of Lodz, Lodz, Poland
- Department of External Beam Radiotherapy, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Lodz, Poland
| | - Matusz Pajdziński
- Department of Radiotherapy, Medical University of Lodz, Lodz, Poland
- Department of External Beam Radiotherapy, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Lodz, Poland
| | - Krzysztof Smółka
- Institute of Mechatronics and Information Systems, Lodz University of Technology, Lodz, Poland
| | - Mateusz Bilski
- Department of Radiotherapy, Medical University of Lublin, Lublin, Poland
- Department of Brachytherapy, Lublin Cancer Center, Lublin, Poland
- Department of Radiotherapy, Lublin Cancer Center, Lublin, Poland
| | - Joanna Socha
- Department of Radiotherapy, Regional Oncology Center, Czestochowa, Poland
| | - Rafał Stando
- Department of Radiation Oncology, Holycross Cancer Center, Kielce, Poland
| | - Magdalena Peszyńska-Piorun
- Radiotherapy Planning Department, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Lodz, Poland
| | - Katarzyna Korab
- Department of Radiotherapy, Lublin Cancer Center, Lublin, Poland
| | - Barbara Alicja Jereczek-Fossa
- Department of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Jacek Fijuth
- Department of Radiotherapy, Medical University of Lodz, Lodz, Poland
- Department of External Beam Radiotherapy, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Lodz, Poland
| |
Collapse
|
3
|
Durante M. Kaplan lecture 2023: lymphopenia in particle therapy. Int J Radiat Biol 2024; 100:669-677. [PMID: 38442137 DOI: 10.1080/09553002.2024.2324472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE Lymphopenia is now generally recognized as a negative prognostic factor in radiotherapy. Already at the beginning of the century we demonstrated that high-energy carbon ions induce less damage to the lymphocytes of radiotherapy patients than X-rays, even if heavy ions are more effective per unit dose in the induction of chromosomal aberrations in blood cells irradiated ex-vivo. The explanation was based on the volume effect, i.e. the sparing of larger volumes of normal tissue in Bragg peak therapy. Here we will review the current knowledge about the difference in lymphopenia between particle and photon therapy and the consequences. CONCLUSIONS There is nowadays an overwhelming evidence that particle therapy reduces significantly the radiotherapy-induced lymphopenia in several tumor sites. Because lymphopenia turns down the immune response to checkpoint inhibitors, it can be predicted that particle therapy may be the ideal partner for combined radiation and immunotherapy treatment and should be selected for patients where severe lymphopenia is expected after X-rays.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
- Dipartimento di Fisica "Ettore Pancini", Università Federico II, Naples, Italy
| |
Collapse
|
4
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Chernysheva AA, Abramova OV, Naumenko VA, Chekhonin VP. The need for paradigm shift: prognostic significance and implications of standard therapy-related systemic immunosuppression in glioblastoma for immunotherapy and oncolytic virotherapy. Front Immunol 2024; 15:1326757. [PMID: 38390330 PMCID: PMC10881776 DOI: 10.3389/fimmu.2024.1326757] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Despite significant advances in our knowledge regarding the genetics and molecular biology of gliomas over the past two decades and hundreds of clinical trials, no effective therapeutic approach has been identified for adult patients with newly diagnosed glioblastoma, and overall survival remains dismal. Great hopes are now placed on combination immunotherapy. In clinical trials, immunotherapeutics are generally tested after standard therapy (radiation, temozolomide, and steroid dexamethasone) or concurrently with temozolomide and/or steroids. Only a minor subset of patients with progressive/recurrent glioblastoma have benefited from immunotherapies. In this review, we comprehensively discuss standard therapy-related systemic immunosuppression and lymphopenia, their prognostic significance, and the implications for immunotherapy/oncolytic virotherapy. The effectiveness of immunotherapy and oncolytic virotherapy (viro-immunotherapy) critically depends on the activity of the host immune cells. The absolute counts, ratios, and functional states of different circulating and tumor-infiltrating immune cell subsets determine the net immune fitness of patients with cancer and may have various effects on tumor progression, therapeutic response, and survival outcomes. Although different immunosuppressive mechanisms operate in patients with glioblastoma/gliomas at presentation, the immunological competence of patients may be significantly compromised by standard therapy, exacerbating tumor-related systemic immunosuppression. Standard therapy affects diverse immune cell subsets, including dendritic, CD4+, CD8+, natural killer (NK), NKT, macrophage, neutrophil, and myeloid-derived suppressor cell (MDSC). Systemic immunosuppression and lymphopenia limit the immune system's ability to target glioblastoma. Changes in the standard therapy are required to increase the success of immunotherapies. Steroid use, high neutrophil-to-lymphocyte ratio (NLR), and low post-treatment total lymphocyte count (TLC) are significant prognostic factors for shorter survival in patients with glioblastoma in retrospective studies; however, these clinically relevant variables are rarely reported and correlated with response and survival in immunotherapy studies (e.g., immune checkpoint inhibitors, vaccines, and oncolytic viruses). Our analysis should help in the development of a more rational clinical trial design and decision-making regarding the treatment to potentially improve the efficacy of immunotherapy or oncolytic virotherapy.
Collapse
Affiliation(s)
- Aleksei A. Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiia O. Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marat P. Valikhov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia A. Chernysheva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V. Abramova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Victor A. Naumenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|