1
|
Jalili J, Walker E, Bowd C, Belghith A, Goldbaum MH, Fazio MA, Girkin CA, De Moraes CG, Liebmann JM, Weinreb RN, Zangwill LM, Christopher M. Deep Learning Approach Predicts Longitudinal Retinal Nerve Fiber Layer Thickness Changes. Bioengineering (Basel) 2025; 12:139. [PMID: 40001659 PMCID: PMC11851649 DOI: 10.3390/bioengineering12020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
This study aims to develop deep learning (DL) models to predict the retinal nerve fiber layer (RNFL) thickness changes in glaucoma, facilitating the early diagnosis and monitoring of disease progression. Using the longitudinal data from two glaucoma studies (Diagnostic Innovations in Glaucoma Study (DIGS) and African Descent and Glaucoma Evaluation Study (ADAGES)), we constructed models using optical coherence tomography (OCT) scans from 251 participants (437 eyes). The models were trained to predict the RNFL thickness at a future visit based on previous scans. We evaluated four models: linear regression (LR), support vector regression (SVR), gradient boosting regression (GBR), and a custom 1D convolutional neural network (CNN). The GBR model achieved the best performance in predicting pointwise RNFL thickness changes (MAE = 5.2 μm, R2 = 0.91), while the custom 1D CNN excelled in predicting changes to average global and sectoral RNFL thickness, providing greater resolution and outperforming the traditional models (MAEs from 2.0-4.2 μm, R2 from 0.94-0.98). Our custom models used a novel approach that incorporated longitudinal OCT imaging to achieve consistent performance across different demographics and disease severities, offering potential clinical decision support for glaucoma diagnosis. Patient-level data splitting enhances the evaluation robustness, while predicting detailed RNFL thickness provides a comprehensive understanding of the structural changes over time.
Collapse
Grants
- R00EY030942, R01EY027510, R01EY034146 R01EY11008, P30EY022589, R01EY026590, EY022039, EY021818, R01EY023704, R01EY029058, EY19869, R21 EY027945, T35 EY033704 NEI NIH HHS
- OT2OD032644 NIH HHS
- The Glaucoma Foundation. Unrestricted grant from Research to Prevent Blindness (New York, NY).
Collapse
Affiliation(s)
- Jalil Jalili
- Hamilton Glaucoma Center and Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, CA 92037, USA; (J.J.); (E.W.); (C.B.); (A.B.); (M.H.G.); (C.A.G.); (R.N.W.); (L.M.Z.)
| | - Evan Walker
- Hamilton Glaucoma Center and Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, CA 92037, USA; (J.J.); (E.W.); (C.B.); (A.B.); (M.H.G.); (C.A.G.); (R.N.W.); (L.M.Z.)
| | - Christopher Bowd
- Hamilton Glaucoma Center and Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, CA 92037, USA; (J.J.); (E.W.); (C.B.); (A.B.); (M.H.G.); (C.A.G.); (R.N.W.); (L.M.Z.)
| | - Akram Belghith
- Hamilton Glaucoma Center and Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, CA 92037, USA; (J.J.); (E.W.); (C.B.); (A.B.); (M.H.G.); (C.A.G.); (R.N.W.); (L.M.Z.)
| | - Michael H. Goldbaum
- Hamilton Glaucoma Center and Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, CA 92037, USA; (J.J.); (E.W.); (C.B.); (A.B.); (M.H.G.); (C.A.G.); (R.N.W.); (L.M.Z.)
| | - Massimo A. Fazio
- Department of Ophthalmology and Vision Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Christopher A. Girkin
- Hamilton Glaucoma Center and Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, CA 92037, USA; (J.J.); (E.W.); (C.B.); (A.B.); (M.H.G.); (C.A.G.); (R.N.W.); (L.M.Z.)
| | - Carlos Gustavo De Moraes
- Bernard and Shirlee Brown Glaucoma Research Laboratory, Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY 10032, USA; (C.G.D.M.); (J.M.L.)
| | - Jeffrey M. Liebmann
- Bernard and Shirlee Brown Glaucoma Research Laboratory, Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, NY 10032, USA; (C.G.D.M.); (J.M.L.)
| | - Robert N. Weinreb
- Hamilton Glaucoma Center and Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, CA 92037, USA; (J.J.); (E.W.); (C.B.); (A.B.); (M.H.G.); (C.A.G.); (R.N.W.); (L.M.Z.)
| | - Linda M. Zangwill
- Hamilton Glaucoma Center and Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, CA 92037, USA; (J.J.); (E.W.); (C.B.); (A.B.); (M.H.G.); (C.A.G.); (R.N.W.); (L.M.Z.)
| | - Mark Christopher
- Hamilton Glaucoma Center and Division of Ophthalmology Informatics and Data Science, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, CA 92037, USA; (J.J.); (E.W.); (C.B.); (A.B.); (M.H.G.); (C.A.G.); (R.N.W.); (L.M.Z.)
| |
Collapse
|
2
|
Pham VQ, Nishida T, Moghimi S, Girkin CA, Fazio MA, Liebmann JM, Zangwill LM, Weinreb RN. Long-Term Blood Pressure Variability and Visual Field Progression in Glaucoma. JAMA Ophthalmol 2025; 143:25-32. [PMID: 39541129 PMCID: PMC11565290 DOI: 10.1001/jamaophthalmol.2024.4868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Importance Long-term variability of blood pressure may be associated with visual field (VF) progression in patients with glaucoma. Objectives To investigate the association between blood pressure parameters and VF progression over time in patients with glaucoma. Design, Setting, and Participants This retrospective cohort study of longitudinal data included patients with suspected or confirmed glaucoma who were selected from the Diagnostic Innovations in Glaucoma Study and the African Descent and Glaucoma Evaluation Study. Patients underwent blood pressure and VF testing from November 2000 to December 2022, and data were analyzed in October 2023. Exposure Suspected or confirmed glaucoma. Main Outcomes and Measures Mean and SD values of blood pressure variables were calculated for systolic and diastolic arterial pressures. These parameters were incorporated into multivariable mixed-effect models to investigate the association between blood pressure parameters and mean intraocular pressure with rates of VF mean deviation loss. Interaction terms between blood pressure parameters and mean intraocular pressure were also included in the models. Results A total of 1674 eyes from 985 patients were assessed (mean [SD] age, 61.2 [0.4] years; 563 female [57.2%]). The mean rate of VF mean deviation change was -0.13 (95% CI, -0.16 to -0.10) dB/y over a mean follow-up of 8.0 (95% CI, 7.7-8.2) years. The interaction terms of higher mean blood pressure and higher SD of blood pressure were associated with faster annual mean deviation changes for both mean arterial pressure (0.02 [95% CI, 0.01-0.04] dB/y per 1-mm Hg higher; P = .001) and diastolic arterial pressure (0.02 [95% CI, 0.01-0.03] dB/y per 1-mm Hg higher; P < .001). The interaction term of higher SD of blood pressure and higher mean intraocular pressure was associated with faster annual mean deviation changes for both mean arterial pressure (0.01 [95% CI, 0.00-0.02] μm per 1-mm Hg higher; P = .003) and diastolic arterial pressure (0.01 [95% CI, 0.00-0.01] μm per 1-mm Hg higher; P = .001). Conclusions and Relevance In this cohort study, higher mean blood pressure and higher SD of blood pressure were associated with faster VF progression. These findings suggest that long-term variability of blood pressure may be a modifier of the association between intraocular pressure and VF progression in glaucoma.
Collapse
Affiliation(s)
- Vincent Q. Pham
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, La Jolla
| | - Takashi Nishida
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, La Jolla
| | - Sasan Moghimi
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, La Jolla
| | - Christopher A. Girkin
- Department of Ophthalmology and Visual Science, Heersink School of Medicine, University of Alabama-Birmingham
| | - Massimo A. Fazio
- Department of Ophthalmology and Visual Science, Heersink School of Medicine, University of Alabama-Birmingham
| | - Jeffrey M. Liebmann
- Bernard and Shirlee Brown Glaucoma Research Laboratory, Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Medical Center, New York, New York
| | - Linda M. Zangwill
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, La Jolla
| | - Robert N. Weinreb
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, La Jolla
| |
Collapse
|
3
|
Araujo VG, Alexandrino-Mattos DP, Marinho TP, Linden R, Petrs-Silva H. Longitudinal evaluation of morphological, functional and vascular alterations in a rat model of experimental glaucoma. Vision Res 2024; 223:108458. [PMID: 39079282 DOI: 10.1016/j.visres.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 09/09/2024]
Abstract
Glaucoma, the leading cause of irreversible blindness worldwide, is a neurodegenerative disease characterized by chronic axonal damages and progressive loss of retinal ganglion cells, with increased intraocular pressure (IOP) as the primary risk factor. While current treatments focus solely on reducing IOP, understanding glaucoma through experimental models is essential for developing new therapeutic strategies and biomarkers for early diagnosis. Our research group developed an ocular hypertension rat model based on limbal plexus cautery, which provides significant glaucomatous neurodegeneration up to four weeks after injury. We evaluated long-term morphological, functional, and vascular alterations in this model. Our results showed that transient ocular hypertension, lasting approximately one week, can lead to progressive increase in optic nerve cupping and retinal ganglion cells loss. Remarkably, the pressure insult caused several vascular changes, such as arteriolar and venular thinning, and permanent choroidal vascular swelling. This study provides evidence of the longitudinal effects of a pressure insult on retinal structure and function using clinical modalities and techniques. The multifactorial changes reported in this model resemble the complex retinal ganglion cell degeneration found in glaucoma patients, and therefore may also provide a unique tool for the development of novel interventions to either halt or slow down disease progression.
Collapse
Affiliation(s)
- Victor G Araujo
- Laboratory of Gene Therapy and Viral Vector, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dio P Alexandrino-Mattos
- Laboratory of Gene Therapy and Viral Vector, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais P Marinho
- Laboratory of Gene Therapy and Viral Vector, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Linden
- Laboratory of Neurogenesis, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hilda Petrs-Silva
- Laboratory of Gene Therapy and Viral Vector, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Tsai YC, Lee HP, Tsung TH, Chen YH, Lu DW. Unveiling Novel Structural Biomarkers for the Diagnosis of Glaucoma. Biomedicines 2024; 12:1211. [PMID: 38927418 PMCID: PMC11200849 DOI: 10.3390/biomedicines12061211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Glaucoma, a leading cause of irreversible blindness, poses a significant global health burden. Early detection is crucial for effective management and prevention of vision loss. This study presents a collection of novel structural biomarkers in glaucoma diagnosis. By employing advanced imaging techniques and data analysis algorithms, we now can recognize indicators of glaucomatous progression. Many research studies have revealed a correlation between the structural changes in the eye or brain, particularly in the optic nerve head and retinal nerve fiber layer, and the progression of glaucoma. These biomarkers demonstrate value in distinguishing glaucomatous eyes from healthy ones, even in the early stages of the disease. By facilitating timely detection and monitoring, they hold the potential to mitigate vision impairment and improve patient outcomes. This study marks an advancement in the field of glaucoma, offering a promising avenue for enhancing the diagnosis and possible management.
Collapse
Affiliation(s)
- Yu-Chien Tsai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Department of Ophthalmology, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
| | - Hsin-Pei Lee
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Ta-Hsin Tsung
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
5
|
Jiang Z, Chernoff D, Galenchik-Chan A, Tomorri D, Honkanen RA, Duong TQ, Muir ER. Improved MRI methods to quantify retinal and choroidal blood flow applied to a model of glaucoma. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1385495. [PMID: 38984144 PMCID: PMC11182105 DOI: 10.3389/fopht.2024.1385495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/23/2024] [Indexed: 07/11/2024]
Abstract
Purpose Blood flow (BF) of the retinal and choroidal vasculatures can be quantitatively imaged using MRI. This study sought to improve methods of data acquisition and analysis for MRI of layer-specific retinal and choroidal BF and then applied this approach to detect reduced ocular BF in a well-established mouse model of glaucoma from both eyes. Methods Quantitative BF magnetic resonance imaging (MRI) was performed on glaucomatous DBA/2J and normal C57BL/6J mice. Arterial spin labeling MRI was applied to image retinal and choroidal BF using custom-made dual eye coils that could image both eyes during the same scan. Statistics using data from a single eye or two eyes were compared. BF values were calculated using two approaches. The BF rate per quantity of tissue was calculated as commonly done, and the peak BF values of the retinal and choroidal vasculatures were taken. Additionally, the BF rate per retinal surface area was calculated using a new analysis approach to attempt to reduce partial volume and variability by integrating BF over the retinal and choroidal depths. Results Ocular BF of both eyes could be imaged using the dual coil setup without effecting scan time. Intraocular pressure was significantly elevated in DBA/2J mice compared to C57BL/6J mice (P<0.01). Both retinal and choroidal BF were significantly decreased in DBA/2J mice in comparison to the age-matched normal C57BL/6J mice across all measurements (P < 0.01). From simulations, the values from the integrated BF analysis method had less partial volume effect, and from in vivo scans, this analysis approach also improved power. Conclusion The dual eye coil setup allows bilateral eye data acquisition, increasing the amount of data acquired without increasing acquisition times in vivo. The reduced ocular BF found using the improved acquisition and analysis approaches replicated the results of previous studies on DBA/2J mice. The ocular hypertensive stress-induced BF reduction found within these mice may represent changes associated with glaucomatous progression.
Collapse
Affiliation(s)
- Zhao Jiang
- Department of Radiology, Stony Brook University, Stony Brook, NY, United States
| | - Diane Chernoff
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Andre Galenchik-Chan
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - David Tomorri
- School of Health Professions, Stony Brook University, Stony Brook, NY, United States
| | - Robert A. Honkanen
- Department of Ophthalmology, Stony Brook University, Stony Brook, NY, United States
| | - Timothy Q. Duong
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Eric R. Muir
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Chaliha DR, Vaccarezza M, Charng J, Chen FK, Lim A, Drummond P, Takechi R, Lam V, Dhaliwal SS, Mamo JCL. Using optical coherence tomography and optical coherence tomography angiography to delineate neurovascular homeostasis in migraine: a review. Front Neurosci 2024; 18:1376282. [PMID: 38686331 PMCID: PMC11057254 DOI: 10.3389/fnins.2024.1376282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Migraine is one of the world's most debilitating disorders, and it has recently been shown that changes in the retina can be a potential biomarker for the disease. These changes can be detected by optical coherence tomography (OCT), which measures retinal thickness, and optical coherence tomography angiography (OCTA), which measures vessel density. We searched the databases Google Scholar, ProQuest, Scopus, and Web of Science for studies in English using OCT and OCTA in migraineurs, using the search terms "optical coherence tomography," "OCT," "optical coherence tomography angiography," "OCTA" and "migraine." We found 73 primary studies, 11 reviews, and 8 meta-analyses pertaining to OCT and OCTA findings in migraineurs. They showed that migraineurs had reduced retinal thickness (via OCT), retinal vessel density, and greater foveal avascular zone area (via OCTA) than controls. OCTA changes reflect a perfusion compromise occurring in migraineurs as opposed to in healthy controls. OCT and OCTA deficits were worse in migraine-with-aura and chronic migraine than in migraine-without-aura and episodic migraine. Certain areas of the eye, such as the fovea, may be more vulnerable to these perfusion changes than other parts. Direct comparison between study findings is difficult because of the heterogeneity between the studies in terms of both methodology and analysis. Moreover, as almost all case-control studies were cross-sectional, more longitudinal cohort studies are needed to determine cause and effect between migraine pathophysiology and OCT/OCTA findings. Current evidence suggests both OCT and OCTA may serve as retinal markers for migraineurs, and further research in this field will hopefully enable us to better understand the vascular changes associated with migraine, perhaps also providing a new diagnostic and therapeutic biomarker.
Collapse
Affiliation(s)
- Devahuti R. Chaliha
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Faculty of Health Sciences, School of Population Health, Curtin University, Perth, WA, Australia
| | - Mauro Vaccarezza
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Jason Charng
- Centre for Ophthalmology and Visual Sciences (Lions Eye Institute), The University of Western Australia, Perth, WA, Australia
- Department of Optometry, School of Allied Health, The University of Western Australia, Perth, WA, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Sciences (Lions Eye Institute), The University of Western Australia, Perth, WA, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Amy Lim
- Department of Optometry, School of Allied Health, The University of Western Australia, Perth, WA, Australia
| | - Peter Drummond
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Ryusuke Takechi
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Faculty of Health Sciences, School of Population Health, Curtin University, Perth, WA, Australia
- Perron Institute Neurological and Translational Sciences, Perth, WA, Australia
| | - Virginie Lam
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Faculty of Health Sciences, School of Population Health, Curtin University, Perth, WA, Australia
- Perron Institute Neurological and Translational Sciences, Perth, WA, Australia
| | - Satvinder S. Dhaliwal
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Pulau Pinang, Malaysia
- Singapore University of Social Sciences, Singapore, Singapore
| | - John C. L. Mamo
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Faculty of Health Sciences, School of Population Health, Curtin University, Perth, WA, Australia
- Perron Institute Neurological and Translational Sciences, Perth, WA, Australia
| |
Collapse
|
7
|
Ji F, Islam MR, Wang B, Hua Y, Sigal IA. Lamina Cribrosa Insertions Into the Sclera Are Sparser, Narrower, and More Slanted in the Anterior Lamina. Invest Ophthalmol Vis Sci 2024; 65:35. [PMID: 38648038 PMCID: PMC11044832 DOI: 10.1167/iovs.65.4.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Purpose The lamina cribrosa (LC) depends on the sclera for support. The support must be provided through the LC insertions. Although a continuous insertion over the whole LC periphery is often assumed, LC insertions are actually discrete locations where LC collagenous beams meet the sclera. We hypothesized that LC insertions vary in number, size, and shape by quadrant and depth. Methods Coronal cryosections through the full LCs from six healthy monkey eyes were imaged using instant polarized light microscopy. The images were registered into a stack, on which we manually marked LC insertion outlines, nothing their position in-depth and quadrant (inferior, superior, nasal, or temporal). From the marks, we determined the insertion number, width, angle to the canal wall (90 degrees = perpendicular), and insertion ratio (fraction of LC periphery represented by insertions). Using linear mixed effect models, we determined if the insertion characteristics were associated with depth or quadrant. Results Insertions in the anterior LC were sparser, narrower, and more slanted than those in deeper LC (P values < 0.001). There were more insertions spanning a larger ratio of the canal wall in the middle LC than in the anterior and posterior (P values < 0.001). In the nasal quadrant, the insertion angles were significantly smaller (P < 0.001). Conclusions LC insertions vary substantially and significantly over the canal. The sparser, narrower, and more slanted insertions of the anterior-most LC may not provide the robust support afforded by insertions of the middle and posterior LC. These variations may contribute to the progressive deepening of the LC and regional susceptibility to glaucoma.
Collapse
Affiliation(s)
- Fengting Ji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Mohammad R. Islam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, United States
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Biomedical Engineering, University of Mississippi, University, Mississippi, United States
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
8
|
Kurokawa K, Nemeth M. Multifunctional adaptive optics optical coherence tomography allows cellular scale reflectometry, polarimetry, and angiography in the living human eye. BIOMEDICAL OPTICS EXPRESS 2024; 15:1331-1354. [PMID: 38404344 PMCID: PMC10890865 DOI: 10.1364/boe.505395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
Clinicians are unable to detect glaucoma until substantial loss or dysfunction of retinal ganglion cells occurs. To this end, novel measures are needed. We have developed an optical imaging solution based on adaptive optics optical coherence tomography (AO-OCT) to discern key clinical features of glaucoma and other neurodegenerative diseases at the cellular scale in the living eye. Here, we test the feasibility of measuring AO-OCT-based reflectance, retardance, optic axis orientation, and angiogram at specifically targeted locations in the living human retina and optic nerve head. Multifunctional imaging, combined with focus stacking and global image registration algorithms, allows us to visualize cellular details of retinal nerve fiber bundles, ganglion cell layer somas, glial septa, superior vascular complex capillaries, and connective tissues. These are key histologic features of neurodegenerative diseases, including glaucoma, that are now measurable in vivo with excellent repeatability and reproducibility. Incorporating this noninvasive cellular-scale imaging with objective measurements will significantly enhance existing clinical assessments, which is pivotal in facilitating the early detection of eye disease and understanding the mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Kazuhiro Kurokawa
- Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Morgan Nemeth
- Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| |
Collapse
|
9
|
Alarcon-Martinez L, Shiga Y, Villafranca-Baughman D, Cueva Vargas JL, Vidal Paredes IA, Quintero H, Fortune B, Danesh-Meyer H, Di Polo A. Neurovascular dysfunction in glaucoma. Prog Retin Eye Res 2023; 97:101217. [PMID: 37778617 DOI: 10.1016/j.preteyeres.2023.101217] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Retinal ganglion cells, the neurons that die in glaucoma, are endowed with a high metabolism requiring optimal provision of oxygen and nutrients to sustain their activity. The timely regulation of blood flow is, therefore, essential to supply firing neurons in active areas with the oxygen and glucose they need for energy. Many glaucoma patients suffer from vascular deficits including reduced blood flow, impaired autoregulation, neurovascular coupling dysfunction, and blood-retina/brain-barrier breakdown. These processes are tightly regulated by a community of cells known as the neurovascular unit comprising neurons, endothelial cells, pericytes, Müller cells, astrocytes, and microglia. In this review, the neurovascular unit takes center stage as we examine the ability of its members to regulate neurovascular interactions and how their function might be altered during glaucomatous stress. Pericytes receive special attention based on recent data demonstrating their key role in the regulation of neurovascular coupling in physiological and pathological conditions. Of particular interest is the discovery and characterization of tunneling nanotubes, thin actin-based conduits that connect distal pericytes, which play essential roles in the complex spatial and temporal distribution of blood within the retinal capillary network. We discuss cellular and molecular mechanisms of neurovascular interactions and their pathophysiological implications, while highlighting opportunities to develop strategies for vascular protection and regeneration to improve functional outcomes in glaucoma.
Collapse
Affiliation(s)
- Luis Alarcon-Martinez
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada; Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Yukihiro Shiga
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Deborah Villafranca-Baughman
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Jorge L Cueva Vargas
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Isaac A Vidal Paredes
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Heberto Quintero
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Healthy, Portland, OR, USA
| | - Helen Danesh-Meyer
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Adriana Di Polo
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada.
| |
Collapse
|