1
|
Chandran S, Verma D, Rajadurai VS, Yap F. Case report: A novel HNF1A variant linked to gestational diabetes, congenital hyperinsulinism, and diazoxide hypersensitivity. Front Endocrinol (Lausanne) 2024; 15:1471596. [PMID: 39421536 PMCID: PMC11484256 DOI: 10.3389/fendo.2024.1471596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
Diazoxide (DZX) remains the first-line medication for the treatment of prolonged and persistent forms of hyperinsulinemic hypoglycemia (HH). In nearly 40%-50% of cases of HH, the genetic mechanism is unidentified. Almost half of the infants with permanent or genetic causes are DZX sensitive, but hypersensitivity to DZX is extremely rare, and the mechanism is poorly understood. Here, we report for the first time a case of DZX hypersensitivity in a neonate with HH who inherited a novel HNF1A variant from the mother. A term, male large-for-gestational-age infant of a diabetic mother presented with early onset of severe, recurrent hypoglycemia. Critical blood samples when hypoglycemic confirmed HH. Diazoxide was initiated at conventional doses of 5 mg/kg/day, which resulted in hyperglycemia (blood glucose, 16.6 mmol/L) within 48 h. Glucose infusion was rapidly weaned off. DZX was withheld and eventually stopped. Following 3 days of milk feeds alone with a normal glucose profile, suspecting a resolution of HH, he underwent a 6-h fasting study and passed. While on glucose monitoring in the hospital, he again developed hypoglycemic episodes, and the critical blood samples confirmed HH. DZX was restarted at a lower dose of 3 mg/kg/day, which required further down-titration to 0.7 mg/kg/day before steady euglycemia was obtained. No more episodes of hypo- or hyperglycemia occurred, and he passed a safety fasting study before discharge. Molecular genetic testing identified a novel HNF1A mutation in the mother-child dyad, whereas the father tested negative. We concluded that the HH phenotype due to this novel HNF1A mutation can be mutation specific and require a very low dose of DZX. Clinicians should observe closely for the risk of diabetic ketoacidosis and hyperglycemic hyperosmolar state while initiating DZX therapy.
Collapse
Affiliation(s)
- Suresh Chandran
- Division of Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Pediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Pediatric Academic Clinical Programme, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Deepti Verma
- Division of Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Victor Samuel Rajadurai
- Division of Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Pediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Pediatric Academic Clinical Programme, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Fabian Yap
- Division of Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Pediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
2
|
Fatema K, Haidar Z, Tanim MTH, Nath SD, Sajib AA. Unveiling the link between arsenic toxicity and diabetes: an in silico exploration into the role of transcription factors. Toxicol Res 2024; 40:653-672. [PMID: 39345741 PMCID: PMC11436564 DOI: 10.1007/s43188-024-00255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024] Open
Abstract
Arsenic-induced diabetes, despite being a relatively newer finding, is now a growing area of interest, owing to its multifaceted nature of development and the diversity of metabolic conditions that result from it, on top of the already complicated manifestation of arsenic toxicity. Identification and characterization of the common and differentially affected cellular metabolic pathways and their regulatory components among various arsenic and diabetes-associated complications may aid in understanding the core molecular mechanism of arsenic-induced diabetes. This study, therefore, explores the effects of arsenic on human cell lines through 14 transcriptomic datasets containing 160 individual samples using in silico tools to take a systematic, deeper look into the pathways and genes that are being altered. Among these, we especially focused on the role of transcription factors due to their diverse and multifaceted roles in biological processes, aiming to comprehensively investigate the underlying mechanism of arsenic-induced diabetes as well as associated health risks. We present a potential mechanism heavily implying the involvement of the TGF-β/SMAD3 signaling pathway leading to cell cycle alterations and the NF-κB/TNF-α, MAPK, and Ca2+ signaling pathways underlying the pathogenesis of arsenic-induced diabetes. This study also presents novel findings by suggesting potential associations of four transcription factors (NCOA3, PHF20, TFDP1, and TFDP2) with both arsenic toxicity and diabetes; five transcription factors (E2F5, ETS2, EGR1, JDP2, and TFE3) with arsenic toxicity; and one transcription factor (GATA2) with diabetes. The novel association of the transcription factors and proposed mechanism in this study may serve as a take-off point for more experimental evidence needed to understand the in vivo cellular-level diabetogenic effects of arsenic. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00255-y.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Zinia Haidar
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Md Tamzid Hossain Tanim
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Sudipta Deb Nath
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| |
Collapse
|
3
|
BORA J, MALIK S, KISHORE S, RUSTAGI S, AHMAD F, FAGOONEE S, PELLICANO R, HAQUE S. Therapeutic applications of CRISPR-Cas9 in diabetes mellitus: a perspective review. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2024; 35. [DOI: 10.23736/s2724-542x.23.02996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
|
4
|
Zhang J, Jiang Y, Li J, Zou H, Yin L, Yang Y, Yang L. Identification and precision therapy for three maturity-onset diabetes of the young (MODY) families caused by mutations in the HNF4A gene. Front Endocrinol (Lausanne) 2023; 14:1237553. [PMID: 37711893 PMCID: PMC10498112 DOI: 10.3389/fendo.2023.1237553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Background Heterozygous pathogenic variants in HNF4A gene cause maturity-onset diabetes of the young type 1 (MODY1). The mutation carriers for MODY1 have been reported to be relatively rare, in contrast to the most frequently reported forms of MODY2 and MODY3. Methods Whole exome sequencing (WES) and Sanger sequencing were performed for genetic analysis of MODY pedigrees. Tertiary structures of the mutated proteins were predicted using PyMOL software. Results Three heterozygous missense mutations in the HNF4A gene, I159T, W179C, and D260N, were identified in the probands of three unrelated MODY families using WES, one of which (W179C) was novel. Cascade genetic screening revealed that the mutations co-segregated with hyperglycemic phenotypes in their families. The molecular diagnosis of MODY1 has partly transformed its management in clinical practice and improved glycemic control. The proband in family A successfully converted to sulfonylureas and achieved good glycemic control. Proband B responded well to metformin combined with diet therapy because of his higher body mass index (BMI). The proband in family C, with paternal-derived mutations, had markedly defective pancreatic β-cell function due to the superposition effect of T2DM susceptibility genes from the maternal grandfather, and he is currently treated with insulin. In silico analysis using PyMOL showed that the I159T and D260N mutations altered polar interactions with the surrounding residues, and W179C resulted in a smaller side chain. Discussion We identified three heterozygous missense mutations of HNF4A from Chinese MODY families. Structural alterations in these mutations may lead to defects in protein function, further contributing to the hyperglycemic phenotype of mutation carriers.
Collapse
Affiliation(s)
- Juan Zhang
- Institute of Monogenic Disease, School of Medicine, Huanghuai University, Zhumadian, China
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, China
| | - Yanyan Jiang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Li
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyin Zou
- Institute of Monogenic Disease, School of Medicine, Huanghuai University, Zhumadian, China
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, China
| | - Li Yin
- Department of Ultrasound Medicine, The 990th Hospital of The People’s Liberation Army, Zhumadian, China
| | - Yang Yang
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, China
| | - Lei Yang
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, China
- Zhumadian Key Laboratory of Chronic Disease Research and Translational Medicine, Institute of Cardiovascular and Cerebrovascular Diseases, School of Medicine, Huanghuai University, Zhumadian, China
| |
Collapse
|
5
|
Radi SH, Vemuri K, Martinez-Lomeli J, Sladek FM. HNF4α isoforms: the fraternal twin master regulators of liver function. Front Endocrinol (Lausanne) 2023; 14:1226173. [PMID: 37600688 PMCID: PMC10438950 DOI: 10.3389/fendo.2023.1226173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
In the more than 30 years since the purification and cloning of Hepatocyte Nuclear Factor 4 (HNF4α), considerable insight into its role in liver function has been gleaned from its target genes and mouse experiments. HNF4α plays a key role in lipid and glucose metabolism and intersects with not just diabetes and circadian rhythms but also with liver cancer, although much remains to be elucidated about those interactions. Similarly, while we are beginning to elucidate the role of the isoforms expressed from its two promoters, we know little about the alternatively spliced variants in other portions of the protein and their impact on the 1000-plus HNF4α target genes. This review will address how HNF4α came to be called the master regulator of liver-specific gene expression with a focus on its role in basic metabolism, the contributions of the various isoforms and the intriguing intersection with the circadian clock.
Collapse
Affiliation(s)
- Sarah H. Radi
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Jose Martinez-Lomeli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
6
|
Clinical and genetic characteristics of patients with congenital hyperinsulinism in 21 non-consanguineous families from Serbia. Eur J Pediatr 2021; 180:2815-2821. [PMID: 33770274 DOI: 10.1007/s00431-021-04051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/07/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
Persistent hypoglycaemia in newborns and infants is most commonly caused by congenital hyperinsulinism (CHI). Most CHI studies report outcomes in children from both consanguineous and non-consanguineous families which can affect the phenotype-genotype analysis. The aim of this study was to analyze characteristics of patients with CHI in 21 non-consanguineous families from Serbia. This retrospective cohort study included a total of 21 patients with CHI treated in the Mother and Child Healthcare Institute of Serbia during the past 20 years. The prevalence of macrosomia at birth was very low in our cohort (4.8%). Median age at presentation was 6 days, with seizures as the presenting symptom in 76% of patients. Only four patients (19%) were diazoxide unresponsive, and eventually underwent pancreatectomy. Genetic testing was performed in 15 patients and genetic diagnosis was confirmed in 60%, with all patients being heterozygous for detected mutations. The ABCC8 gene mutations were detected in 55.6%, GLUD1 in three patients (33.3%) with HIHA syndrome and one patient had HNF4A gene mutation and unusual prolonged hyperglycaemia lasting 6 days after diazoxide cessation. Neurodevelopmental deficits persisted in 33% of patients.Conclusion: This is the first study regarding CHI patients in Serbia. It suggests that in countries with low consanguinity rate, majority of CHI patients are diazoxide responsive. The most common mutations were heterozygous ABCC8, followed by GLUD1 and HNF4A mutations, suggesting the potential benefit of population-tailored genetic analysis approach, targeting the mutations causing CHI via dominant inheritance model in regions with low consanguinity rates. What is Known: • Persistent hypoglycaemia during infancy and early childhood is most commonly caused by congenital hyperinsulinism (CHI). • Consanguinity is a very important factor regarding the genetics and phenotype of CHI, increasing the risk of autosomal recessive genetic disorders, including the severe, diazoxide-unresponsive forms caused by recessive inactivating mutations in ABCC8 and KCNJ11. What is New: • Results of the present study which included CHI patients from 21 non-consanguineous families suggest that in countries with low consanguinity rates, majority of CHI patients can be diazoxide responsive, with most common mutations being heterozygous ABCC8, followed by GLUD1 and HNF4A mutations. • Unusually prolonged hyperglycaemic reaction to diazoxide treatment in a patient with HNF4A mutation was also described in the present study.
Collapse
|
7
|
Maturity Onset Diabetes of the Young-New Approaches for Disease Modelling. Int J Mol Sci 2021; 22:ijms22147553. [PMID: 34299172 PMCID: PMC8303136 DOI: 10.3390/ijms22147553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a genetically heterogeneous group of monogenic endocrine disorders that is characterised by autosomal dominant inheritance and pancreatic β-cell dysfunction. These patients are commonly misdiagnosed with type 1 or type 2 diabetes, as the clinical symptoms largely overlap. Even though several biomarkers have been tested none of which could be used as single clinical discriminator. The correct diagnosis for individuals with MODY is of utmost importance, as the applied treatment depends on the gene mutation or is subtype-specific. Moreover, in patients with HNF1A-MODY, additional clinical monitoring can be included due to the high incidence of vascular complications observed in these patients. Finally, stratification of MODY patients will enable better and newer treatment options for MODY patients, once the disease pathology for each patient group is better understood. In the current review the clinical characteristics and the known disease-related abnormalities of the most common MODY subtypes are discussed, together with the up-to-date applied diagnostic criteria and treatment options. Additionally, the usage of pluripotent stem cells together with CRISPR/Cas9 gene editing for disease modelling with the possibility to reveal new pathophysiological mechanisms in MODY is discussed.
Collapse
|