1
|
Kachabi A, Colebank MJ, Chesler NC. Subject-specific one-dimensional fluid dynamics model of chronic thromboembolic pulmonary hypertension. Biomech Model Mechanobiol 2024; 23:469-483. [PMID: 38017302 PMCID: PMC10963496 DOI: 10.1007/s10237-023-01786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/21/2023] [Indexed: 11/30/2023]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) develops due to the accumulation of blood clots in the lung vasculature that obstructs flow and increases pressure. The mechanobiological factors that drive progression of CTEPH are not understood, in part because mechanical and hemodynamic changes in the small pulmonary arteries due to CTEPH are not easily measurable. Using previously published hemodynamic measurements and imaging from a large animal model of CTEPH, we applied a subject-specific one-dimensional (1D) computational fluid dynamic (CFD) approach to investigate the impact of CTEPH on pulmonary artery stiffening, time-averaged wall shear stress (TAWSS), and oscillatory shear index (OSI) in extralobar (main, right, and left) pulmonary arteries and intralobar (distal to the extralobar) arteries. Our results demonstrate that CTEPH increases pulmonary artery wall stiffness and decreases TAWSS in extralobar and intralobar arteries. Moreover, CTEPH increases the percentage of the intralobar arterial network with both low TAWSS and high OSI, quantified by the novel parameter φ , which is related to thrombogenicity. Our analysis reveals a strong positive correlation between increases in mean pulmonary artery pressure (mPAP) and φ from baseline to CTEPH in individual subjects, which supports the suggestion that increased φ drives disease severity. This subject-specific experimental-computational framework shows potential as a predictor of the impact of CTEPH on pulmonary arterial hemodynamics and pulmonary vascular mechanics. By leveraging advanced modeling techniques and calibrated model parameters, we predict spatial distributions of flow and pressure, from which we can compute potential physiomarkers of disease progression. Ultimately, this approach can lead to more spatially targeted interventions that address the needs of individual CTEPH patients.
Collapse
Affiliation(s)
- Amirreza Kachabi
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Mitchel J Colebank
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Naomi C Chesler
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Yu P, Xiong J, Tong Z, Chen L, Hu L, Liu J, Liu J. Hemodynamic-based virtual surgery design of double-patch repair for pulmonary arterioplasty in tetralogy of Fallot. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 245:108012. [PMID: 38246096 DOI: 10.1016/j.cmpb.2024.108012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND AND OBJECTIVE Surgical correction of pulmonary artery stenosis (PAS) is essential to the prognosis of patients with tetralogy of Fallot (TOF). The double-patch method of pulmonary arterioplasty is usually applied in case of multiple stenosis in TOF patients' pulmonary artery (PA) and when PAS cannot be relieved by the single-patch method. The surgical planning for the double-patch design remains challenging. The purpose of this study is to investigate the double-patch design with different angulations between the left pulmonary artery (LPA) and the right pulmonary artery (RPA), and to understand postoperative hemodynamic alterations by the application of computer-aided design (CAD) and computational fluid dynamics (CFD) techniques. METHODS The three-dimensional model of the PA was reconstructed based on preoperative computed tomography imaging data obtained from the patient with TOF. Three postoperative models with different designs of double-patch were created by "virtual surgery" using the CAD technique. Double-Patch 120 Model was created with double patches implanted in the main pulmonary artery (MPA) and the PA bifurcation and without changing the spatial position of PA. The angulation between the LPA and the RPA was defined as θ, which equaled to 120° in Pre-Operative Model and Double-Patch 120 Model. Based on Double-Patch 120 Model, Double-Patch 110 Model and Double-Patch 130 Model were generated with θ equaled to 110° and 130°, respectively. Combined with CFD, the differences of velocity streamlines, wall shear stress (WSS), flow distribution ratio (FDR), and energy loss (EL) were compared to analyze postoperative pulmonary flow characteristics. RESULTS The values of velocity and WSS decreased significantly after virtual surgery. Obvious vortices and swirling flows were observed downstream of the stenosis of RPA and LPA in Pre-Operative Model, while fewer vortices developed along the anterior wall of the expanded lumens of RPA, especially in Double-Patch 110 Model. With the relief of PAS, two relatively higher WSS regions were observed at the posterior walls of RPA and LPA. The maximum WSS values in these regions of Double-Patch 110 Model were lower than those in Double-Patch 120 Model and Double-Patch 130 Model. Furthermore, the FDRs were elevated and the ELs were greatly reduced. It was found that Double-Patch 110 Model with the angulation between the LPA and the RPA equaled to 110° showed relatively better properties of hemodynamics than other models. CONCLUSIONS The angulation between the LPA and the RPA is an important factor that should be integrated in the double-patch design for TOF repair. Virtual surgery based on patient-specific vascular model and computational hemodynamics can be used to provide assistance for individualized surgical planning of double-patch arterioplasty.
Collapse
Affiliation(s)
- Pingping Yu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jiwen Xiong
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Center of Virtual Reality of Structural Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhirong Tong
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Center of Virtual Reality of Structural Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lijun Chen
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liwei Hu
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinfen Liu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Center of Virtual Reality of Structural Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinlong Liu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Engineering Research Center of Virtual Reality of Structural Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
3
|
Kachabi A, Colebank MJ, Chesler N. Subject-specific one-dimensional fluid dynamics model of chronic thromboembolic pulmonary hypertension. RESEARCH SQUARE 2023:rs.3.rs-3214385. [PMID: 37577616 PMCID: PMC10418554 DOI: 10.21203/rs.3.rs-3214385/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) develops due to the accumulation of blood clots in the lung vasculature that obstruct flow and increase pressure. The mechanobiological factors that drive progression of CTEPH are not understood, in part because mechanical and hemodynamic changes in the pulmonary vasculature due to CTEPH are not easily measurable. Using previously published hemodynamic measurements and imaging from a large animal model of CTEPH, we developed a subject-specific one-dimensional (1D) computational fluid dynamic (CFD) models to investigate the impact of CTEPH on pulmonary artery stiffening, time averaged wall shear stress (TAWSS), and oscillatory shear index (OSI). Our results demonstrate that CTEPH increases pulmonary artery wall stiffness and decreases TAWSS in extralobar (main, right and left pulmonary arteries) and intralobar vessels. Moreover, CTEPH increases the percentage of the intralobar arterial network with both low TAWSS and high OSI. This subject-specific experimental-computational framework shows potential as a predictor of the impact of CTEPH on pulmonary arterial hemodynamics and pulmonary vascular mechanics. By leveraging advanced modeling techniques and calibrated model parameters, we predict spatial distributions of flow and pressure, from which we can compute potential physiomarkers of disease progression, including the combination of low mean wall shear stress with high oscillation. Ultimately, this approach can lead to more spatially targeted interventions that address the needs of individual CTEPH patients.
Collapse
|
4
|
Wang Z, Zhang X, Li Y, Yang H, Xue H, Wei Y, Qian Y. Simulation of Cardiac Flow under the Septal Defect Based on Lattice Boltzmann Method. ENTROPY 2022; 24:e24020187. [PMID: 35205482 PMCID: PMC8871033 DOI: 10.3390/e24020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 12/10/2022]
Abstract
In this paper, the lattice Boltzmann method was used to simulate the cardiac flow in children with aseptal defect. The inner wall model of the heart was reconstructed from 210 computed tomography scans. By simulating and comparing the cardiac flow field, the pressure field, the blood oxygen content, and the distribution of entropy generation before and after an operation, the effects of septal defect on pulmonary hypertension(PH), cyanosis, and heart load were analyzed in detail. It is found that the atrial septal defect(ASD) of the child we analyzed had a great influence on the blood oxygen content in the pulmonary artery, which leads to lower efficiency of oxygen binding in the lungs and increases the burden on the heart. At the same time, it also significantly enhanced the entropy generation rate of the cardiac flow, which also leads to a higher heart load. However, the main cause of PH is not ASD, but ventricular septal defect (VSD). Meanwhile, it significantly reduced the blood oxygen content in the brachiocephalic trunk, but rarely affects the blood oxygen contents in the downstream left common carotid artery, left subclavian artery, and descending aorta are not significantly affected by VSD. It causes severe cyanosis on the face and lips.
Collapse
Affiliation(s)
- Zhengdao Wang
- State-Province Joint Engineering Lab of Fluid Transmission System Technology, Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Z.W.); (X.Z.); (Y.L.); (H.Y.)
| | - Xiandong Zhang
- State-Province Joint Engineering Lab of Fluid Transmission System Technology, Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Z.W.); (X.Z.); (Y.L.); (H.Y.)
| | - Yumeng Li
- State-Province Joint Engineering Lab of Fluid Transmission System Technology, Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Z.W.); (X.Z.); (Y.L.); (H.Y.)
| | - Hui Yang
- State-Province Joint Engineering Lab of Fluid Transmission System Technology, Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Z.W.); (X.Z.); (Y.L.); (H.Y.)
| | - Haihong Xue
- Department of Pediatric, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Correspondence: (H.X.); (Y.W.)
| | - Yikun Wei
- State-Province Joint Engineering Lab of Fluid Transmission System Technology, Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Z.W.); (X.Z.); (Y.L.); (H.Y.)
- Correspondence: (H.X.); (Y.W.)
| | - Yuehong Qian
- School of Mathematical Science, Soochow University, Suzhou 215006, China;
| |
Collapse
|
5
|
Dong ML, Lan IS, Yang W, Rabinovitch M, Feinstein JA, Marsden AL. Computational simulation-derived hemodynamic and biomechanical properties of the pulmonary arterial tree early in the course of ventricular septal defects. Biomech Model Mechanobiol 2021; 20:2471-2489. [PMID: 34585299 DOI: 10.1007/s10237-021-01519-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/12/2021] [Indexed: 01/15/2023]
Abstract
Untreated ventricular septal defects (VSDs) can lead to pulmonary arterial hypertension (PAH) characterized by elevated pulmonary artery (PA) pressure and vascular remodeling, known as PAH associated with congenital heart disease (PAH-CHD). Though previous studies have investigated hemodynamic effects on vascular mechanobiology in late-stage PAH, hemodynamics leading to PAH-CHD initiation have not been fully quantified. We hypothesize that abnormal hemodynamics from left-to-right shunting in early stage VSDs affects PA biomechanical properties leading to PAH initiation. To model PA hemodynamics in healthy, small, moderate, and large VSD conditions prior to the onset of vascular remodeling, computational fluid dynamics simulations were performed using a 3D finite element model of a healthy 1-year-old's proximal PAs and a body-surface-area-scaled 0D distal PA tree. VSD conditions were modeled with increased pulmonary blood flow to represent degrees of left-to-right shunting. In the proximal PAs, pressure, flow, strain, and wall shear stress (WSS) increased with increasing VSD size; oscillatory shear index decreased with increasing VSD size in the larger PA vessels. WSS was higher in smaller diameter vessels and increased with VSD size, with the large VSD condition exhibiting WSS >100 dyn/cm[Formula: see text], well above values typically used to study dysfunctional mechanotransduction pathways in PAH. This study is the first to estimate hemodynamic and biomechanical metrics in the entire pediatric PA tree with VSD severity at the stage leading to PAH initiation and has implications for future studies assessing effects of abnormal mechanical stimuli on endothelial cells and vascular wall mechanics that occur during PAH-CHD initiation and progression.
Collapse
Affiliation(s)
- Melody L Dong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ingrid S Lan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Weiguang Yang
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Jeffrey A Feinstein
- Department of Pediatrics and Bioengineering, Stanford University, Stanford, CA, USA
| | - Alison L Marsden
- Department of Pediatrics and Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|