1
|
Schultheiß C, Paschold L, Mohebiany AN, Escher M, Kattimani YM, Müller M, Schmidt-Barbo P, Mensa-Vilaró A, Aróstegui JI, Boursier G, de Moreuil C, Hautala T, Willscher E, Jonas H, Chinchuluun N, Grosser B, Märkl B, Klapper W, Oommen PT, Gössling K, Hoffmann K, Tiegs G, Czernilofsky F, Dietrich S, Freeman A, Schwartz DM, Waisman A, Aksentijevich I, Binder M. A20 haploinsufficiency disturbs immune homeostasis and drives the transformation of lymphocytes with permissive antigen receptors. SCIENCE ADVANCES 2024; 10:eadl3975. [PMID: 39167656 PMCID: PMC11338232 DOI: 10.1126/sciadv.adl3975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Genetic TNFAIP3 (A20) inactivation is a classical somatic lymphoma lesion and the genomic trait in haploinsufficiency of A20 (HA20). In a cohort of 34 patients with HA20, we show that heterozygous TNFAIP3 loss skews immune repertoires toward lymphocytes with classical self-reactive antigen receptors typically found in B and T cell lymphomas. This skewing was mediated by a feed-forward tumor necrosis factor (TNF)/A20/nuclear factor κB (NF-κB) loop that shaped pre-lymphoma transcriptome signatures in clonally expanded B (CD81, BACH2, and NEAT1) or T (GATA3, TOX, and PDCD1) cells. The skewing was reversed by anti-TNF treatment but could also progress to overt lymphoma. Analysis of conditional TNFAIP3 knock-out mice reproduced the wiring of the TNF/A20/NF-κB signaling axis with permissive antigen receptors and suggested a distinct regulation in B and T cells. Together, patients with the genetic disorder HA20 provide an exceptional window into A20/TNF/NF-κB-mediated control of immune homeostasis and early steps of lymphomagenesis that remain clinically unrecognized.
Collapse
Affiliation(s)
- Christoph Schultheiß
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Lisa Paschold
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Alma Nazlie Mohebiany
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Moritz Escher
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Yogita Mallu Kattimani
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Melanie Müller
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Paul Schmidt-Barbo
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
| | - Anna Mensa-Vilaró
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Juan Ignacio Aróstegui
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- School of Medicine, University of Barcelona, Barcelona, Spain
| | - Guilaine Boursier
- Department of molecular and cytogenomics, Rare and Autoinflammatory Diseases Laboratory, CHU Montpellier, IRMB, University of Montpellier, INSERM, CEREMAIA, Montpellier, France
| | - Claire de Moreuil
- Department of Internal Medicine, CHU Brest, Université de Bretagne Occidentale, Brest, France
| | - Timo Hautala
- Research Unit of Biomedicine, University of Oulu and Department of Internal Medicine, Oulu University Hospital, Oulu, Finland
| | - Edith Willscher
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Hanna Jonas
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Namuun Chinchuluun
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Bianca Grosser
- Institute for Pathology, University Medical Center Augsburg, Augsburg, Germany
| | - Bruno Märkl
- Institute for Pathology, University Medical Center Augsburg, Augsburg, Germany
| | - Wolfram Klapper
- Institute of Pathology, Hematopathology Section, and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Prasad Thomas Oommen
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Center for Child and Adolescent Health, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katharina Gössling
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Center for Child and Adolescent Health, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Katrin Hoffmann
- Institute for Human Genetics and Molecular Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Gisa Tiegs
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Czernilofsky
- Department of Medicine V, Hematology, Oncology, and Rheumatology, University of Heidelberg, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology, and Rheumatology, University of Heidelberg, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematolgy, Oncology, and Immunolgy, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Alexandra Freeman
- Laboratory of Clinical Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Daniella M. Schwartz
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mascha Binder
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
| |
Collapse
|
2
|
Bagyinszky E, An SSA. Genetic Mutations Associated With TNFAIP3 (A20) Haploinsufficiency and Their Impact on Inflammatory Diseases. Int J Mol Sci 2024; 25:8275. [PMID: 39125844 PMCID: PMC11311569 DOI: 10.3390/ijms25158275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
TNF-α-induced protein 3 (TNFAIP3), commonly referred to as A20, is an integral part of the ubiquitin-editing complex that significantly influences immune regulation, apoptosis, and the initiation of diverse immune responses. The A20 protein is characterized by an N-terminal ovarian tumor (OTU) domain and a series of seven zinc finger (ZNF) domains. Mutations in the TNFAIP3 gene are implicated in various immune-related diseases, such as Behçet's disease, polyarticular juvenile idiopathic arthritis, autoimmune thyroiditis, autoimmune hepatitis, and rheumatoid arthritis. These mutations can lead to a spectrum of symptoms, including, but not limited to, recurrent fever, ulcers, rashes, musculoskeletal and gastrointestinal dysfunctions, cardiovascular issues, and respiratory infections. The majority of these mutations are either nonsense (STOP codon) or frameshift mutations, which are typically associated with immune dysfunctions. Nonetheless, missense mutations have also been identified as contributors to these conditions. These genetic alterations may interfere with several biological pathways, notably abnormal NF-κB signaling and dysregulated ubiquitination. Currently, there is no definitive treatment for A20 haploinsufficiency; however, therapeutic strategies can alleviate the symptoms in patients. This review delves into the mutations reported in the TNFAIP3 gene, the clinical progression in affected individuals, potential disease mechanisms, and a brief overview of the available pharmacological interventions for A20 haploinsufficiency. Mandatory genetic testing of the TNFAIP3 gene should be performed in patients diagnosed with autoinflammatory disorders to better understand the genetic underpinnings and guide treatment decisions.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
3
|
Elhani I, Riller Q, Boursier G, Hentgen V, Rieux-Laucat F, Georgin-Lavialle S. A20 Haploinsufficiency: A Systematic Review of 177 Cases. J Invest Dermatol 2024; 144:1282-1294.e8. [PMID: 38128752 DOI: 10.1016/j.jid.2023.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
A20 haploinsufficiency is an autoinflammatory disease caused by defective inactivation of the NF-κB pathway. We conducted a systematic literature review of articles reporting patients with TNFAIP3 sequence variants from 2016 to August 2023 following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Data from 177 patients from 65 articles were retrieved (108 women). The principal features were mucosal ulcers (n = 129); fever (n = 93) followed by gastrointestinal (n = 81); skin features (n = 76); autoimmunity (n = 61), including thyroiditis (n = 25) and lupus (n = 16); and joint involvements (n = 54). Five patients had died at the time of publication. In 54 of 63 patients, CRP was significantly elevated during flares, with a median of 51 mg/l. The most commonly used treatment included corticosteroids and nonsteroidal anti-inflammatory drugs (n = 32), TNF blockers (n = 29), colchicine (n = 28), and methotrexate (n = 14). TNFAIP3 variants impacted the ovarian tumor domain in 92 cases and a Zinc finger domain in 68 cases. Geographic origin, reported sex, and variant type significantly impacted phenotype. A better understanding of the wide A20 haploinsufficiency phenotype could facilitate the diagnosis process. Much remains to be elucidated about pathogenesis and treatment to improve outcome in patients with A20 haploinsufficiency.
Collapse
Affiliation(s)
- Inès Elhani
- Department of Internal Medicine, Tenon Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Saint-Antoine Research Center (CRSA) INSERM UMRS 938, Sorbonne Université, Paris, France; National French Reference Centre for Auto-inflammatory Diseases and Inflammatory Amyloidosis (CEREMAIA), Montpellier, France; Department of General Pediatrics, Versailles Hospital, Versailles, France.
| | - Quentin Riller
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Guilaine Boursier
- National French Reference Centre for Auto-inflammatory Diseases and Inflammatory Amyloidosis (CEREMAIA), Montpellier, France; Laboratory of Rare and Autoinflammatory Genetic Diseases, Department of genetics, CHU Montpellier, Univ Montpellier, Montpellier, France
| | - Véronique Hentgen
- National French Reference Centre for Auto-inflammatory Diseases and Inflammatory Amyloidosis (CEREMAIA), Montpellier, France; Department of General Pediatrics, Versailles Hospital, Versailles, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Sophie Georgin-Lavialle
- Department of Internal Medicine, Tenon Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Saint-Antoine Research Center (CRSA) INSERM UMRS 938, Sorbonne Université, Paris, France; National French Reference Centre for Auto-inflammatory Diseases and Inflammatory Amyloidosis (CEREMAIA), Montpellier, France.
| |
Collapse
|
4
|
Maghsoudlou P, Abraham AR, El-Ashry M, Chew C, Mohd N, Ramanan AV, Dick AD. Uveitis Associated with Monogenic Autoinflammatory Syndromes in Children. Ocul Immunol Inflamm 2023; 31:1930-1943. [PMID: 38051595 PMCID: PMC11166052 DOI: 10.1080/09273948.2023.2282610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Monogenic autoinflammatory syndromes (MAISs), are caused by pathogenic genetic variants in the innate immune system, leading to dysregulation and aberrant inflammasome activation spontaneously or with minimal triggering. The diagnosis and treatment of MAISs can be intricate, relying on an increased recognition of potential differential diagnoses. This review examines the clinical features of MAIS, with a special focus on uveitis. It also evaluates treatment options and assesses the effects of activating molecular and cytokine pathways.
Collapse
Affiliation(s)
- P Maghsoudlou
- Academic Unit of Ophthalmology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - A R Abraham
- Academic Unit of Ophthalmology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - M El-Ashry
- Department of Paediatric Ophthalmology, Bristol Eye Hospital, Bristol, UK
| | - C Chew
- Department of Paediatric Rheumatology, University of Bristol, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol, UK
| | - N Mohd
- Department of Paediatric Ophthalmology, Bristol Eye Hospital, Bristol, UK
| | - A V Ramanan
- Department of Paediatric Rheumatology, University of Bristol, Bristol, UK
| | - A D Dick
- Academic Unit of Ophthalmology, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol, UK
- UCL Institute of Ophthalmology, London, UK
- NIHR - Biomedical Research Centre, Moorfields and UCL - Institute of Ophthalmology, London, UK
| |
Collapse
|