1
|
Athalye-Jape G, Rath CP, Panchal H, Mishra A, Graham D, Patole S. Evaluation of Faecal Microbiota Following Probiotics in Infants of Mothers with Gestational Diabetes Mellitus Trial: Protocol for Double-Blind Placebo-Controlled Randomized Trial. Microorganisms 2025; 13:112. [PMID: 39858880 PMCID: PMC11767400 DOI: 10.3390/microorganisms13010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/24/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
(1) Background: The incidence of gestational diabetes mellitus (GDM) is rising globally. The current evidence indicates that GDM, especially in conjunction with maternal overweight, can alter the composition of infants' gut microbiota, potentially increasing the risk of inflammatory diseases, metabolic disorders, and neurodevelopmental issues later in life. Probiotic supplantation early in life might establish eubiosis and mitigate future complications. To best of our knowledge, no study has evaluated the effects of probiotics on gut dysbiosis in the infants of mothers with GDM. (2) Methods: This study will be a single-centre, double-blind, randomized, placebo-controlled trial enrolling sixty neonates born after 35 weeks of gestation to mothers with GDM. The participants will be randomly assigned to receive either a triple-strain probiotic or a placebo for four months. The primary objective is to assess the effectiveness of probiotic supplementation in correcting gut dysbiosis in the infants of mothers with GDM at four months of age. Faecal microbiome composition shall be estimated using 16SrRNA and shotgun sequencing. The secondary outcomes will include the quantification of faecal short-chain fatty acids at birth and at four months, as well as growth and developmental assessments at four, twelve, and twenty-four months. (3) Trial registration: This trial protocol is registered (ACTRN12624000930583p) in the Australian Clinical Trials registry (ANZCTR).
Collapse
Affiliation(s)
- Gayatri Athalye-Jape
- Department of Neonatology, King Edward Memorial Hospital, Perth, WA 6008, Australia; (C.P.R.); (H.P.)
- School of Medicine, The University of Western Australia, Crawley, WA 6009, Australia
- The Kids Research Institute, Perth, WA 6009, Australia;
| | - Chandra Prakash Rath
- Department of Neonatology, King Edward Memorial Hospital, Perth, WA 6008, Australia; (C.P.R.); (H.P.)
- School of Medicine, The University of Western Australia, Crawley, WA 6009, Australia
| | - Harshad Panchal
- Department of Neonatology, King Edward Memorial Hospital, Perth, WA 6008, Australia; (C.P.R.); (H.P.)
| | - Archita Mishra
- The Kids Research Institute, Perth, WA 6009, Australia;
- Indian Institute of Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Dorothy Graham
- Department of Obstetric Medicine, King Edward Memorial Hospital, Perth, WA 6008, Australia;
| | - Sanjay Patole
- Department of Neonatology, King Edward Memorial Hospital, Perth, WA 6008, Australia; (C.P.R.); (H.P.)
- School of Medicine, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
2
|
Shao W, Su Y, Liu J, Liu Y, Zhao J, Fan X. Understanding the link between different types of maternal diabetes and the onset of autism spectrum disorders. DIABETES & METABOLISM 2024; 50:101543. [PMID: 38761920 DOI: 10.1016/j.diabet.2024.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Autism spectrum disorders (ASD) encompass a collection of neurodevelopmental disorders that exhibit impaired social interactions and repetitive stereotypic behaviors. Although the exact cause of these disorders remains unknown, it is widely accepted that both genetic and environmental factors contribute to their onset and progression. Recent studies have highlighted the potential negative impact of maternal diabetes on embryonic neurodevelopment, suggesting that intrauterine hyperglycemia could pose an additional risk to early brain development and contribute to the development of ASD. This paper presents a comprehensive analysis of the current research on the relationship between various forms of maternal diabetes, such as type 1 diabetes mellitus, type 2 diabetes mellitus, and gestational diabetes mellitus, and the likelihood of ASD in offspring. The study elucidates the potential mechanisms through which maternal hyperglycemia affects fetal development, involving metabolic hormones, immune dysregulation, heightened oxidative stress, and epigenetic alterations. The findings of this review offer valuable insights for potential preventive measures and evidence-based interventions targeting ASD.
Collapse
Affiliation(s)
- Wenyu Shao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yichun Su
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yulong Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jinghui Zhao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
3
|
Gumusoglu SB. The role of the placenta-brain axis in psychoneuroimmune programming. Brain Behav Immun Health 2024; 36:100735. [PMID: 38420039 PMCID: PMC10900837 DOI: 10.1016/j.bbih.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/06/2024] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
Gestational exposures have enduring impacts on brain and neuroimmune development and function. Perturbations of pregnancy leading to placental structure/function deficits, cell stress, immune activation, and endocrine changes (metabolic, growth factors, etc.) all increase neuropsychiatric risk in offspring. The existing literature links obstetric diseases with placental involvement to offspring neuroimmune outcomes and neurodevelopmental risk. Psychoneuroimmune outcomes in offspring brain include changes to microglia, cytokine/chemokine production, cell stress, and long-term immunoreactivity. These outcomes are altered by structural, anti-angiogenic/hypoxic, inflammatory, and metabolic diseases of the placenta. This fetal programming occurs via direct placental passage or production of factors which can act directly on fetal brain substrates, or indirectly via action of circulating factors on intermediates in the placenta. Placental neuroendocrine, vascular/angiogenic, immune, and extracellular vesicular mechanisms are detailed. These mechanisms interact within various placental and pregnancy conditions. An increased understanding of the placental origins of psychoneuroimmunology will yield dividends for human health. Identifying maternal and placental biomarkers for fetal neuroimmune health may also revolutionize early diagnosis and precision psychiatry, empowering patients to make the best healthcare decisions for their families. Targeting placental mechanisms may be a valuable approach for the prevention and mitigation of intergenerational, lifelong neuropathology.
Collapse
Affiliation(s)
- Serena B. Gumusoglu
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, 200 Hawkins Dr. Iowa City, IA, 52327, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
4
|
Rodolaki K, Pergialiotis V, Iakovidou N, Boutsikou T, Iliodromiti Z, Kanaka-Gantenbein C. The impact of maternal diabetes on the future health and neurodevelopment of the offspring: a review of the evidence. Front Endocrinol (Lausanne) 2023; 14:1125628. [PMID: 37469977 PMCID: PMC10352101 DOI: 10.3389/fendo.2023.1125628] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
Maternal health during gestational period is undoubtedly critical in shaping optimal fetal development and future health of the offspring. Gestational diabetes mellitus is a metabolic disorder occurring in pregnancy with an alarming increasing incidence worldwide during recent years. Over the years, there is a growing body of evidence that uncontrolled maternal hyperglycaemia during pregnancy can potentially have detrimental effect on the neurodevelopment of the offspring. Both human and animal data have linked maternal diabetes with motor and cognitive impairment, as well as autism spectrum disorders, attention deficit hyperactivity disorder, learning abilities and psychiatric disorders. This review presents the available data from current literature investigating the relationship between maternal diabetes and offspring neurodevelopmental impairment. Moreover, possible mechanisms accounting for the detrimental effects of maternal diabetes on fetal brain like fetal neuroinflammation, iron deficiency, epigenetic alterations, disordered lipid metabolism and structural brain abnormalities are also highlighted. On the basis of the evidence demonstrated in the literature, it is mandatory that hyperglycaemia during pregnancy will be optimally controlled and the impact of maternal diabetes on offspring neurodevelopment will be more thoroughly investigated.
Collapse
Affiliation(s)
- Kalliopi Rodolaki
- First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilios Pergialiotis
- First Department of Obstetrics and Gynecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoleta Iakovidou
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Boutsikou
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Zoe Iliodromiti
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Kanaka-Gantenbein
- First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|