1
|
Finsterer J, Mehri S. Before Venous Sinus Thrombosis is Attributed to Hyperhomocysteinemia, Alternative Causes Must be Thoroughly Ruled Out. Ann Afr Med 2024; 24:01244624-990000000-00079. [PMID: 39513465 PMCID: PMC11837817 DOI: 10.4103/aam.aam_130_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 09/10/2024] [Indexed: 11/15/2024] Open
Affiliation(s)
- Josef Finsterer
- Department of Neurology, Neurology and Neurophysiology Center, Vienna, Austria
| | - Sounira Mehri
- Department of Neurological, Nutrition-Functional Foods and Vascular Health, Faculty of Medicine, Monastir, Tunisia
| |
Collapse
|
2
|
Mathew AR, Di Matteo G, La Rosa P, Barbati SA, Mannina L, Moreno S, Tata AM, Cavallucci V, Fidaleo M. Vitamin B12 Deficiency and the Nervous System: Beyond Metabolic Decompensation-Comparing Biological Models and Gaining New Insights into Molecular and Cellular Mechanisms. Int J Mol Sci 2024; 25:590. [PMID: 38203763 PMCID: PMC10778862 DOI: 10.3390/ijms25010590] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Vitamin B12 (VitB12) is a micronutrient and acts as a cofactor for fundamental biochemical reactions: the synthesis of succinyl-CoA from methylmalonyl-CoA and biotin, and the synthesis of methionine from folic acid and homocysteine. VitB12 deficiency can determine a wide range of diseases, including nervous system impairments. Although clinical evidence shows a direct role of VitB12 in neuronal homeostasis, the molecular mechanisms are yet to be characterized in depth. Earlier investigations focused on exploring the biochemical shifts resulting from a deficiency in the function of VitB12 as a coenzyme, while more recent studies propose a broader mechanism, encompassing changes at the molecular/cellular levels. Here, we explore existing study models employed to investigate the role of VitB12 in the nervous system, including the challenges inherent in replicating deficiency/supplementation in experimental settings. Moreover, we discuss the potential biochemical alterations and ensuing mechanisms that might be modified at the molecular/cellular level (such as epigenetic modifications or changes in lysosomal activity). We also address the role of VitB12 deficiency in initiating processes that contribute to nervous system deterioration, including ROS accumulation, inflammation, and demyelination. Consequently, a complex biological landscape emerges, requiring further investigative efforts to grasp the intricacies involved and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Aimee Rachel Mathew
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (A.M.T.)
| | - Giacomo Di Matteo
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185 Rome, Italy; (G.D.M.); (L.M.)
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy;
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Saviana Antonella Barbati
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Luisa Mannina
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185 Rome, Italy; (G.D.M.); (L.M.)
| | - Sandra Moreno
- Department of Science, University Roma Tre, 00146 Rome, Italy;
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Ada Maria Tata
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (A.M.T.)
- Research Centre of Neurobiology “Daniel Bovet”, Sapienza University of Rome, 00185 Rome, Italy
| | - Virve Cavallucci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco Fidaleo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (A.M.T.)
- Research Center for Nanotechnology Applied to Engineering (CNIS), Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
3
|
Liu YP, He RX, Chen ZH, Kang LL, Song JQ, Liu Y, Shi CY, Chen JY, Dong H, Zhang Y, Li MQ, Jin Y, Qin J, Yang YL. Case report: An asymptomatic mother with an inborn error of cobalamin metabolism (cblC) detected through high homocysteine levels during prenatal diagnosis. Front Nutr 2023; 10:1124387. [PMID: 37252234 PMCID: PMC10213673 DOI: 10.3389/fnut.2023.1124387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Background The most common disorder of the intracellular cobalamin metabolism pathway is the combined methylmalonic acidemia and homocysteinemia, cblC type (cblC). There is a variation in its clinical spectrum ranging from severe neonatal-onset forms that are highly fatal to later-onset forms which are milder. In this study, the first case of an asymptomatic Chinese woman with a defect in congenital cobalamin (cblC type) metabolism at prenatal diagnosis due to elevated homocysteine level is identified. Case presentation The proband, a male child born to a 29-year-old G1P0 mother, admitted to local hospital with feeding disorder, intellectual disability, seizures, microcephaly, as well as heterophthalmos. The level of the urine methylmalonic was elevated. Equally found were increased blood propionylcarnitine (C3) and propionylcarnitine/free carnitine ratio (C3/C0) and decreased methionine levels. The plasma total homocysteine level was elevated at 101.04 μmol/L (normal < 15 μmol/L). The clinical diagnosis of combined methylmalonic acidemia and homocysteinemia was supported. Four years later, the mother of the boy married again and came to us for prenatal diagnosis exactly 15 weeks after her last menstrual period. Subsequently, there is an increase in the amniotic fluid methylmalonate. The level of the amniotic fluid total homocysteine was marginally high. A considerably elevated amniotic fluid C3 was equally observed. In addition, there is a respective significant increase in the plasma and urine total homocysteine at 31.96 and 39.35 μmol/L. After the sequencing of MMACHC genes, it is found that the boy, a proband carried a homozygous mutation of the MMACHC at c.658_660delAAG. While the boy's mother, she carries two mutations in MMACHC: c.658_660delAAG and c.617G>A. The fetus is a carrier of the MMACHC gene. Following the administration of routine treatment, the mother remained symptom-free in the course of pregnancy, and she gave birth to a healthy boy. Conclusion Variable and nonspecific symptoms characterized the cblC type of methylmalonic acidemia combined with homocysteinemia. Both biochemical assays and mutation analysis are recommended as crucial complementary techniques.
Collapse
Affiliation(s)
- Yu-Peng Liu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ru-Xuan He
- Department of Respiratory, Beijing Children′s Hospital, Capital Medical University, Beijing, China
| | - Zhe-Hui Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lu-Lu Kang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin-Qing Song
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yi Liu
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Chun-Yan Shi
- Department of Gynaecology and Obstetrics, Peking University First Hospital, Beijing, China
| | - Jun-Ya Chen
- Department of Gynaecology and Obstetrics, Peking University First Hospital, Beijing, China
| | - Hui Dong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yao Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Meng-Qiu Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Yan-Ling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|