1
|
Huang J, Lin H, Liu AN, Wu W, Alisi A, Loomba R, Xu C, Xiang W, Shao J, Dong G, Zheng MH, Fu J, Ni Y. Dynamic pattern of postprandial bile acids in paediatric non-alcoholic fatty liver disease. Liver Int 2024; 44:2793-2806. [PMID: 39082260 DOI: 10.1111/liv.16054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Dysregulation of bile acids (BAs), as important signalling molecules in regulating lipid and glucose metabolism, contributes to the development of non-alcoholic fatty liver disease (NAFLD). However, static BA profiles during fasting may obscure certain pathogenetic aspects. In this study, we investigate the dynamic alterations of BAs in response to an oral glucose tolerance test (OGTT) among children with NAFLD. METHODS We recruited 230 subjects, including children with overweight/obesity, or complicated with NAFLD, and healthy controls. Serum BAs, 7-hydroxy-4-cholesten-3-one (C4) and fibroblast growth factor 19 (FGF19) were quantified during OGTT. Clinical markers related to liver function, lipid metabolism and glucose metabolism were assessed at baseline or during OGTT. FINDINGS Conjugated BAs increased while unconjugated ones decreased after glucose uptake. Most BAs were blunted in response to glucose in NAFLD (p > .05); only glycine and taurine-conjugated chenodeoxycholic acid (CDCA) and cholic acid (CA) were responsive (p < .05). Primary BAs were significantly increased while secondary BAs were decreased in NAFLD. C4 and FGF19 were significantly increased while their ratio FGF19/C4 ratio was decreased in NAFLD. The dynamic pattern of CDCA and taurine-conjugated hyocholic acid (THCA) species was closely correlated with glucose (correlation coefficient r = .175 and -.233, p < .05), insulin (r = .327 and -.236, p < .05) and c-peptide (r = .318 and -.238, p < .05). Among which, CDCA was positively associated with liver fat content in NAFLD (r = .438, p < .05). Additionally, glycochenodeoxycholic acid (GCDCA), CDCA and THCA were potential biomarkers to discriminate paediatric NAFLD from healthy controls and children with obesity. INTERPRETATION This study provides novel insights into the dynamics of BAs during OGTT in paediatric NAFLD. The observed variations in CDCA and HCA species were associated with liver dysfunction, dyslipidaemia and dysglycaemia, highlighting their potential roles as promising diagnostic and therapeutic targets in NAFLD.
Collapse
Affiliation(s)
- Jiating Huang
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hu Lin
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - A-Na Liu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Wei Wu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
| | - Cuifang Xu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Wenqin Xiang
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Shao
- Department of Child Healthcare, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guanping Dong
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Ni
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
2
|
Antonella M, Pietrobattista A, Maggiore G. Metabolic-Associated Steatotic Liver Disease (MASLD): A New Term for a More Appropriate Therapy in Pediatrics? Pediatr Rep 2024; 16:288-299. [PMID: 38651464 PMCID: PMC11036198 DOI: 10.3390/pediatric16020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
The term "non-alcoholic fatty liver disease" (NAFLD) has been, for a long time, used to describe the spectrum of liver lesions encompassing steatosis, steatohepatitis (NASH), and steatotic cirrhosis [...].
Collapse
Affiliation(s)
- Mosca Antonella
- Hepatology and Liver Transplant Unit, ERN RARE LIVER, Bambino Gesù Children’s Hospital, Istituto di ricerca, 00165 Rome, Italy; (A.P.); (G.M.)
| | | | | |
Collapse
|
3
|
Bergmann K, Stefanska A, Krintus M, Szternel L, Bilinski WJ, Paradowski PT, Sypniewska G. Diagnostic Performance of Biomarker-Based Scores as Predictors of Metabolic Dysfunction-Associated Fatty Liver Disease Risk in Healthy Children. Nutrients 2023; 15:3667. [PMID: 37630857 PMCID: PMC10458960 DOI: 10.3390/nu15163667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Metabolic dysfunction-associated fatty liver disease (MAFLD)-a new definition for non-alcoholic fatty liver disease-reflects the impact of metabolic abnormalities on liver function. We assessed the diagnostic accuracy of biomarker-based scores for prediction of MAFLD in apparently healthy children. METHODS This study included 144 children aged 9-11. MAFLD was recognized in 14 girls and 29 boys. Anthropometric indices, glycemia, insulin resistance, lipid profile, enzymes (ALT, AST, GGT, ALP), CRP, N-terminal propeptide of type I procollagen (P1NP) and collagen type I C-telopeptide (CTX-1) levels were measured. Fatty liver and hepatic steatosis index (FLI, HSI) and potential indicators of liver fibrogenesis: P1NP/ALP, P1NP/ALPxALT, P1NP/ALPxCRP were calculated. RESULTS P1NP/ALPxALT and P1NP/ALPxCRP were significantly higher in subjects with MAFLD. FLI was a good, significant predictor of MAFLD occurrence, regardless of sex. In boys, P1NP/ALPxCRP was a comparable predictor as CRP (OR 1.14 vs. 1.17; p < 0.001). P1NP/ALPxCRP had better discrimination capability in boys (AUC = 0.79; p < 0.001). However, the use of this algorithm did not improve discriminatory power in comparison to CRP (AUC = 0.81; p < 0.001), but gave a better sensitivity for MAFLD prediction (86% vs. 59%). CONCLUSIONS We suggest that P1NP/ALPXCRP is a reliable tool for MAFLD prediction in routine pediatric practice.
Collapse
Affiliation(s)
- Katarzyna Bergmann
- Department of Laboratory Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland; (A.S.); (M.K.); (L.S.); (G.S.)
| | - Anna Stefanska
- Department of Laboratory Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland; (A.S.); (M.K.); (L.S.); (G.S.)
| | - Magdalena Krintus
- Department of Laboratory Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland; (A.S.); (M.K.); (L.S.); (G.S.)
| | - Lukasz Szternel
- Department of Laboratory Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland; (A.S.); (M.K.); (L.S.); (G.S.)
| | - Wojciech J. Bilinski
- Department of Orthopaedics, KoMed Poddebice Health Center, 99-200 Poddebice, Poland;
| | - Przemyslaw T. Paradowski
- Department of Surgical and Perioperative Sciences, Division of Orthopaedics, Sunderby Research Unit, Umeå University, 971 80 Luleå, Sweden;
- Clinical Epidemiology Unit, Orthopedics, Department of Clinical Sciences Lund, Lund University, 223 62 Lund, Sweden
| | - Grazyna Sypniewska
- Department of Laboratory Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland; (A.S.); (M.K.); (L.S.); (G.S.)
| |
Collapse
|