1
|
Borghol AH, Bou Antoun MT, Hanna C, Salih M, Rahbari-Oskoui FF, Chebib FT. Autosomal dominant polycystic kidney disease: an overview of recent genetic and clinical advances. Ren Fail 2025; 47:2492374. [PMID: 40268755 PMCID: PMC12020221 DOI: 10.1080/0886022x.2025.2492374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common inherited kidney disease, characterized by the progressive development of multiple kidney cysts, leading to a gradual decline in kidney function. ADPKD is also the fourth leading cause of kidney failure (KF) in adults. In addition to kidney manifestations, ADPKD is associated with various extrarenal features, including liver cysts, cardiovascular abnormalities, intracranial aneurysms, and chronic pain with significant impact on patients' quality of life. While several disease-modifying agents have been tested in ADPKD, tolvaptan remains the only approved drug by the US Food and Drug Administration. The Mayo Imaging Classification is currently the most practical tool for predicting rate of kidney disease progression in ADPKD. This review provides a comprehensive overview of ADPKD, focusing on its genetics, pathophysiology, clinical presentation, management, and prognostic tools. Advances in diagnostic imaging and genetic testing have improved the early detection of ADPKD, allowing better classification of patients and prediction of KF. The review also discusses current therapeutic approaches to ADPKD, including tolvaptan, a vasopressin V2-receptor antagonist. Additionally, we address specific issues in children and pregnant individuals with ADPKD. Despite substantial progress in understanding ADPKD, there is a large need for additional effective treatments and prognostic markers to provide a more personalized care for these patients.
Collapse
Affiliation(s)
- Abdul Hamid Borghol
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Florida PKD Center of Excellence, Jacksonville, FL, USA
| | - Marie Therese Bou Antoun
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Florida PKD Center of Excellence, Jacksonville, FL, USA
| | - Christian Hanna
- Division of Pediatric Nephrology and Hypertension, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mahdi Salih
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Fouad T. Chebib
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Florida PKD Center of Excellence, Jacksonville, FL, USA
| |
Collapse
|
2
|
Ledbetter DH, Finucane B, Moreno-De-Luca D, Myers SM. Mainstreaming Diagnostic Genetic Testing and Precision Medicine for Autism Spectrum Disorder: The Role of Child and Adolescent Psychiatrists. Psychiatr Clin North Am 2025; 48:343-360. [PMID: 40348422 DOI: 10.1016/j.psc.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental psychiatric condition that shares significant clinical and genetic overlap with intellectualdisability (ID) and other neurodevelopmental disorders. Genetic testingin ASD lags far behind that for ID, even though Professional Societiesrecommend genetic testing for all ASD individuals and insurance reimbursement is relatively good. The core competencies for child and adolescent psychiatrists include determining the etiology and diagnosisfor all childhood psychopathology, including ID and ASD. Child psychiatrists should recommend and order genetic testing by exomeor genome sequencing on all children with ASD.
Collapse
Affiliation(s)
- David H Ledbetter
- Department of Clinical Sciences, Institute for Pediatric Rare Diseases, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA.
| | - Brenda Finucane
- Department of Developmental Medicine, Geisinger College of Health Sciences, 120 Hamm Drive, Lewisburg, PA 17837, USA
| | - Daniel Moreno-De-Luca
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Faculty of Medicine and Dentistry; Women and Children's Health Research Institute; Neuroscience and Mental Health Institute; Precision Medicine in Autism (PRISMA) Group; University of Alberta, Alberta Health Services, CASA Mental Health, 11361 87 Avenue, Suite 5-020K, Edmonton, AB T6G 2E1, Canada
| | - Scott M Myers
- Department of Developmental Medicine, Geisinger College of Health Sciences, 120 Hamm Drive, Lewisburg, PA 17837, USA
| |
Collapse
|
3
|
Zhang S, Ma Y, Zang X, Heng H, Liu X, Peng G, Liu R, Liang J, Geng H. A Case of 17q12 Microdeletion Syndrome in a MODY5 Type Diabetes with HNF-1β Gene Mutation Accompanied. Appl Clin Genet 2024; 17:125-130. [PMID: 39050772 PMCID: PMC11268705 DOI: 10.2147/tacg.s465859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/22/2024] [Indexed: 07/27/2024] Open
Abstract
Maturity Onset Diabetes of the Young (MODY) is an autosomal dominant inherited disorder prevalent among adolescents. Typically, it manifests with hyperglycemia before the age of 25. MODY5 is attributed to a mutation in the Hepatocyte Nuclear Factor-1β (HNF-1β) gene. A complete absence of HNF-1β is observed in 50% of those with MODY5. The 17q12 microdeletion syndrome closely linked with MODY5. Its incidence in the general population is around 1 in 14,500 and is linked with facial deformities, diabetes, polycystic kidneys, pancreatic hypertrophy, liver anomalies, and neuropsychological impairments. The most primary clinical signs are predominantly associated with the HNF-1β gene deletion. We chronicle the case of a male of 19 years of age diagnosed with diabetes, who, alongside persistent liver damage and polycystic kidneys, was referred from a community hospital to the Xuzhou Central Hospital. His clinical presentation included diabetes, liver dysfunction, polycystic kidneys, lipid irregularities, insulin resistance, and fatty atrophy. Subsequent genetic screening unveiled a 17q12 chromosomal deletion and an absence of the Hepatocyte Nuclear Factor-1β (HNF-1β) gene. Hence, for adolescent patients lacking a familial diabetes history but exhibiting symptoms like polycystic kidneys, liver damage, lipid irregularities, and fatty atrophy, a thorough assessment for the 17q12 microdeletion syndrome becomes imperative.
Collapse
Affiliation(s)
- Shuping Zhang
- Graduate School, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Yamei Ma
- Graduate School, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Xiu Zang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, Jiangsu, People’s Republic of China
| | - Hao Heng
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, Jiangsu, People’s Republic of China
| | - Xuekui Liu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, Jiangsu, People’s Republic of China
| | - Gangshan Peng
- The Affiliated Xuzhou Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Ran Liu
- The Affiliated Xuzhou Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Jun Liang
- Graduate School, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, Jiangsu, People’s Republic of China
| | - Houfa Geng
- Graduate School, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
4
|
Rioux AV, Nsimba-Batomene TR, Slimani S, Bergeron NAD, Gravel MAM, Schreiber SV, Fiola MJ, Haydock L, Garneau AP, Isenring P. Navigating the multifaceted intricacies of the Na +-Cl - cotransporter, a highly regulated key effector in the control of hydromineral homeostasis. Physiol Rev 2024; 104:1147-1204. [PMID: 38329422 PMCID: PMC11381001 DOI: 10.1152/physrev.00027.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.
Collapse
Affiliation(s)
- A V Rioux
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - T R Nsimba-Batomene
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - N A D Bergeron
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M A M Gravel
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S V Schreiber
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M J Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - L Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - A P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - P Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
5
|
Alamri N, Lanktree MB. Large Kidney Cysts in HNF1B Nephropathy Mimicking Autosomal Dominant Polycystic Kidney Disease. Can J Kidney Health Dis 2024; 11:20543581241232470. [PMID: 38370308 PMCID: PMC10874158 DOI: 10.1177/20543581241232470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Rationale Hepatocyte nuclear factor 1 beta (HNF1B) nephropathy is a rare autosomal dominant monogenic kidney disease. We present a case mimicking autosomal dominant polycystic kidney disease (ADPKD), highlighting the phenotypic heterogeneity of HNF1B-related disease. Presenting concerns of the patient A 37-year-old man presented with hypertensive urgency, accompanied by flank pain and abdominal distension. Despite the absence of familial kidney disease, imaging revealed large bilateral kidney cysts resembling ADPKD. Diagnosis We initially suspected de novo ADPKD. However, negative genetic testing results for PKD1 and PKD2 led to a 43-gene cystic kidney sequencing panel which identified a deletion encompassing the entire HNF1B gene. Intervention To alleviate discomfort caused by the kidney cysts, ultrasound-guided aspiration and foam sclerotherapy were performed. Tolvaptan, used for treating high-risk ADPKD, was not prescribed after confirming the diagnosis was HNF1B nephropathy. Outcomes A diagnosis of HNF1B nephropathy was reached following gene panel testing. Abdominal symptoms improved following cyst aspiration and foam sclerotherapy. Novel findings HNF1B nephropathy has a variable presentation but can lead to cysts appearing like ADPKD. A 43-gene cystic kidney sequencing panel identified the diagnosis in this uncertain case.
Collapse
Affiliation(s)
- Nada Alamri
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew B. Lanktree
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton, ON, Canada
- Division of Nephrology, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|