1
|
Wu Q, Sun B, Hou J, Hui X, Wang C, Wang W, Ying W, Liu L, Zhu L, Wang Y, Li Q, Yu M, Zhou W, Chen Y, Wu B, Sun J, Zhou Q, Qian F, Wang X. Novel Compound Heterozygous Variants in the FAS Gene Lead to Fetal Onset of Autoimmune Lymphoproliferative Syndrome (ALPS). J Clin Immunol 2024; 45:23. [PMID: 39384643 DOI: 10.1007/s10875-024-01812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/21/2024] [Indexed: 10/11/2024]
Abstract
OBJECTIVE FAS gene defects lead to autoimmune lymphoproliferative syndrome (ALPS), which is often inherited in an autosomal dominant and rarely in an autosomal recessive manner. We report a case of a newborn girl with novel compound heterozygous variants in FAS and reveal the underlying mechanism. METHODS Whole-exome sequencing (WES) was used to identify pathogenic variants. Multiparametric flow cytometry analysis, phosflow analysis, and FAS-induced apoptosis assays were used to explore the effects of the variants on FAS expression, apoptosis, and immunophenotype. The HEK293T cells were used to assess the impact of the variants on protein expression and FAS-induced apoptosis. RESULTS The patient was born with hepatosplenomegaly, anemia, and thrombocytopenia. She also experienced COVID-19, rotavirus infection, herpes simplex virus infection, and severe pneumonia. The proportion of double-negative T cells (DNTs) was significantly elevated. Novel FAS compound heterozygous variants c.310T > A (p.C104S) and c.702_704del (p.T235del) were identified. The apoptotic ability of T cells was defective, and FAS expression on the surface of T cells was deficient. The T235del variant decreased FAS expression, and the C104S protein remained in the endoplasmic reticulum (ER) and could not translocate to the cell surface. Both mutations resulted in loss-of-function in terms of FAS-induced apoptosis in HEK293T cells. The DNTs were mainly terminally differentiated T (TEMRA) and CD45RA+HLA-DR+, with high expression of CD85j, PD-1, and CD57. The percentage of Th1, Tfh, and autoreactive B cells were significantly increased in the patient. The abnormal immunophenotyping was partially attenuated by sirolimus treatment. CONCLUSIONS We identified two variants that significantly affect FAS expression or localization, leading to early disease onset of in the fetus. Abnormalities in the mTOR pathway are associated with a favorable response to sirolimus.
Collapse
Affiliation(s)
- Qi Wu
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Bijun Sun
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Jia Hou
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaoying Hui
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Chenghao Wang
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Wenjie Wang
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Wenjing Ying
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Luyao Liu
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Li Zhu
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Ying Wang
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai, China
| | - Qifan Li
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Meiping Yu
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Weitao Zhou
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yao Chen
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Clinical Genetic Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jinqiao Sun
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
| | - Qinhua Zhou
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China.
| | - Feng Qian
- Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China.
| | - Xiaochuan Wang
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China.
| |
Collapse
|
2
|
Magerus A, Rensing-Ehl A, Rao VK, Teachey DT, Rieux-Laucat F, Ehl S. Autoimmune lymphoproliferative immunodeficiencies (ALPIDs): A proposed approach to redefining ALPS and other lymphoproliferative immune disorders. J Allergy Clin Immunol 2024; 153:67-76. [PMID: 37977527 PMCID: PMC10841637 DOI: 10.1016/j.jaci.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Chronic nonmalignant lymphoproliferation and autoimmune cytopenia are relevant manifestations of immunohematologic diseases of childhood. Their diagnostic classification is challenging but important for therapy. Autoimmune lymphoproliferative syndrome (ALPS) is a genetically defined inborn error of immunity combining these manifestations, but it can explain only a small proportion of cases. Diagnostic categories such as ALPS-like disease, common variable immunodeficiency, or Evans syndrome have therefore been used. Advances in genetics and increasing availablity of targeted therapies call for more therapy-oriented disease classification. Moreover, recent discoveries in the (re)analysis of genetic conditions affecting FAS signaling ask for a more precise definition of ALPS. In this review, we propose the term autoimmune lymphoproliferative immunodeficiencies for a disease phenotype that is enriched for patients with genetic diseases for which targeted therapies are available. For patients without a current molecular diagnosis, this term defines a subgroup of immune dysregulatory disorders for further studies. Within the concept of autoimmune lymphoproliferative immunodeficiencies, we propose a revision of the ALPS classification, restricting use of this term to conditions with clear evidence of perturbation of FAS signaling and resulting specific biologic and clinical consequences. This proposed approach to redefining ALPS and other lymphoproliferative conditions provides a framework for disease classification and diagnosis that is relevant for the many specialists confronted with these diseases.
Collapse
Affiliation(s)
- Aude Magerus
- University of Paris Cité, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Md
| | - David T Teachey
- Division of Hematology, The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa; Division of Oncology, The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa
| | - Frederic Rieux-Laucat
- University of Paris Cité, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|