1
|
Scarano N, Brullo C, Musumeci F, Millo E, Bruzzone S, Schenone S, Cichero E. Recent Advances in the Discovery of SIRT1/2 Inhibitors via Computational Methods: A Perspective. Pharmaceuticals (Basel) 2024; 17:601. [PMID: 38794171 PMCID: PMC11123952 DOI: 10.3390/ph17050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Sirtuins (SIRTs) are classified as class III histone deacetylases (HDACs), a family of enzymes that catalyze the removal of acetyl groups from the ε-N-acetyl lysine residues of histone proteins, thus counteracting the activity performed by histone acetyltransferares (HATs). Based on their involvement in different biological pathways, ranging from transcription to metabolism and genome stability, SIRT dysregulation was investigated in many diseases, such as cancer, neurodegenerative disorders, diabetes, and cardiovascular and autoimmune diseases. The elucidation of a consistent number of SIRT-ligand complexes helped to steer the identification of novel and more selective modulators. Due to the high diversity and quantity of the structural data thus far available, we reviewed some of the different ligands and structure-based methods that have recently been used to identify new promising SIRT1/2 modulators. The present review is structured into two sections: the first includes a comprehensive perspective of the successful computational approaches related to the discovery of SIRT1/2 inhibitors (SIRTIs); the second section deals with the most interesting SIRTIs that have recently appeared in the literature (from 2017). The data reported here are collected from different databases (SciFinder, Web of Science, Scopus, Google Scholar, and PubMed) using "SIRT", "sirtuin", and "sirtuin inhibitors" as keywords.
Collapse
Affiliation(s)
- Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Francesca Musumeci
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.M.); (S.B.)
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy; (E.M.); (S.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (N.S.); (F.M.); (S.S.)
| |
Collapse
|
2
|
Wang S, Hu S. The Role of Sirtuins in Osteogenic Differentiation of Vascular Smooth Muscle Cells and Vascular Calcification. Front Cardiovasc Med 2022; 9:894692. [PMID: 35722093 PMCID: PMC9198215 DOI: 10.3389/fcvm.2022.894692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular calcification (VC) is a common pathological change in many chronic diseases, such as diabetes and chronic kidney disease. It is mainly deposited in the intima and media of vessels in the form of hydroxyapatite. Recently, a lot of research has been performed to show that VC is associated with various cellular stresses, such as hyperphosphate, hyperglycemia and oxidative stress. Unfortunately, our understanding of the pathogenesis of calcification is far from comprehensive. Sirtuins belong to a family of class III highly conserved deacetylases that are involved in the regulation of biological and cellular processes including mitochondrial biogenesis, metabolism, oxidative stress, inflammatory response, DNA repair, etc. Numerous studies have shown that sirtuins might play protective roles in VC, and restoring the activity of sirtuins may be a potentially effective treatment for VC. However, the exact mechanism of their vascular protection remains unclear. Here, we reviewed the roles of sirtuins in the osteogenic transformation of vascular smooth muscle cells and the development of VC. We also elucidated the applications of sirtuins agonists for the treatment of VC.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Department of Cardiology, The First People's Hospital of Wenling (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| | - Siwang Hu
- The Orthopedic Center, The First People's Hospital of Wenling (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
- *Correspondence: Siwang Hu
| |
Collapse
|
3
|
Huang C, Sharma A, Thakur R, Rai D, Katiki M, Germano JDF, Song Y, Singh S, Sin J, Sengstock D, Andres AM, Murali R, Mentzer RM, Gottlieb RA, Piplani H. Asporin, an extracellular matrix protein, is a beneficial regulator of cardiac remodeling. Matrix Biol 2022; 110:40-59. [DOI: 10.1016/j.matbio.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 01/15/2023]
|
4
|
Salekeen R, Diaconeasa AG, Billah MM, Islam KMD. Energy Metabolism Focused Analysis of Sexual Dimorphism in Biological Aging and Hypothesized Sex-specificity in Sirtuin Dependency. Mitochondrion 2021; 60:85-100. [PMID: 34332101 DOI: 10.1016/j.mito.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 01/09/2023]
Abstract
The process of biological aging or senescence refers to the gradual loss of homeostasis and subsequent loss of function - leading to higher chances of mortality. Many mechanisms and driving forces have been suggested to facilitate the evolution of a molecular circuit acting as a trade-off between survival and proliferation, resulting in senescence. A major observation on biological aging and longevity in humans and model organisms is the prevalence of significant sexual divergence in the onset, mechanisms and effects of aging associated processes. In the current account, we describe possible mechanisms by which aging, sex and reproduction are evolutionarily intertwined in order to maintain systemic energy homeostasis. We also interrogate existing literature on the sexual dimorphism of genetic, cellular, metabolic, endocrine and epigenetic processes driving cellular and systemic aging. Subsequently, based on available evidence, we propose a hypothetic model of sex-limited decoupling of female longevity from sirtuins, a major family of regulator proteins of the survival-proliferation trade-off. We also provide necessary considerations to be made in order to test the hypothesis and explore the physiological and therapeutic implications of this decoupling event in male and female longevity after reaching reproductive maturity. HYPOTHESIS STATEMENT: Sirtuins provide survival benefits in a sex-nonspecific manner but the dependency on sirtuins in driving metabolic networks after reaching reproductive maturity is evolutionarily decoupled from female longevity.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| | - Amalia Gabriela Diaconeasa
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| |
Collapse
|
5
|
Ku SK, Lim JM, Cho HR, Bashir KMI, Kim YS, Choi JS. Tart Cherry (Fruit of Prunus cerasus) Concentrated Powder (TCcp) Ameliorates Glucocorticoid-Induced Muscular Atrophy in Mice. ACTA ACUST UNITED AC 2021; 57:medicina57050485. [PMID: 34066110 PMCID: PMC8151970 DOI: 10.3390/medicina57050485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
Background and Objectives: The present study investigated the beneficial effects of tart cherry (fruit of Prunus cerasus) concentrated powder (TCcp) on glucocorticoid (GLU)-induced catabolic muscular atrophy in the skeletal muscle of mice. Furthermore, its potential mechanism was also studied. Materials and Methods: Changes in calf thickness, calf muscle weight, calf muscle strength, body weight, gastrocnemius muscle histology, immunohistochemistry, serum creatinine, creatine kinase, lactate dehydrogenase, and antioxidant defense systems were measured. Malondialdehyde, reactive oxygen species, glutathione content, catalase, and superoxide dismutase activities in the gastrocnemius muscle, and muscle-specific mRNA expressions were evaluated. Results: After 24 days, GLU control mice showed muscular atrophy at all criteria of indexes. The muscular atrophy symptoms were significantly inhibited by oral treatment with 250 mg/kg and 500 mg/kg of TCcp through antioxidative and anti-inflammatory modulated expression of genes involved in muscle protein degradation (myostatin, atrogin-1, SIRT1, and MuRF1) and synthesis (A1R, Akt1, TRPV4, and PI3K). Conclusions: This study shows that the TCcp (500 mg/kg and 250 mg/kg) could improve muscular atrophies caused by various etiologies.
Collapse
Affiliation(s)
- Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, 1, Hanuidae-ro, Gyeongsan-si, Gyeongsangbuk-do 38610, Korea;
| | - Jong-Min Lim
- Glucan Corporation, 25-15, Worasan-ro 950beon-gil, Munsan-eup, Jinju-si, Gyeongsangnam-do 52840, Korea; (J.-M.L.); (H.-R.C.)
| | - Hyung-Rae Cho
- Glucan Corporation, 25-15, Worasan-ro 950beon-gil, Munsan-eup, Jinju-si, Gyeongsangnam-do 52840, Korea; (J.-M.L.); (H.-R.C.)
| | - Khawaja Muhammad Imran Bashir
- German Engineering Research and Development Center for Life Science Technologies in Medicine and Environment, 31, Gwahaksandan 1-ro, 60 bean-gil, Gangseo-gu, Busan 46742, Korea;
| | - Young Suk Kim
- Glucan Corporation, 25-15, Worasan-ro 950beon-gil, Munsan-eup, Jinju-si, Gyeongsangnam-do 52840, Korea; (J.-M.L.); (H.-R.C.)
- Correspondence: (Y.S.K.); (J.-S.C.); Tel.: +82-55-762-0275 (Y.S.K.); +82-51-999-5647 (J.-S.C.)
| | - Jae-Suk Choi
- Department of Food Biotechnology, College of Medical and Life Sciences, Silla University, 140, Baegyang-daero 700beon-gil, Sasang-gu, Busan 46958, Korea
- Correspondence: (Y.S.K.); (J.-S.C.); Tel.: +82-55-762-0275 (Y.S.K.); +82-51-999-5647 (J.-S.C.)
| |
Collapse
|
6
|
Ma Y, Xu B, Yu J, Huang L, Zeng X, Shen X, Ren C, Ben-David Y, Luo H. Fli-1 Activation through Targeted Promoter Activity Regulation Using a Novel 3', 5'-diprenylated Chalcone Inhibits Growth and Metastasis of Prostate Cancer Cells. Int J Mol Sci 2020; 21:2216. [PMID: 32210104 PMCID: PMC7139342 DOI: 10.3390/ijms21062216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
The friend leukemia integration 1 (Fli-1) gene is involved in the expression control of key genes in multiple pathogenic/physiological processes, including cell growth, differentiation, and apoptosis; this implies that Fli-1 is a strong candidate for drug development. In our previous study, a 3',5'-diprenylated chalcone, (E)-1-(2-hydroxy-4-methoxy-3,5-diprenyl) phenyl-3-(3-pyridinyl)-propene-1-one (C10), was identified as a novel anti-prostate cancer (PCa) agent. Here, we investigated the molecular mechanisms underlying the anti-cancer effects of C10 on the growth, metastasis, and invasion of PC3 cells in vitro. Our results show that C10 exhibited a strong inhibitory effect on proliferation and metastasis of PC3 cells via several cellular and flow cytometric analyses. Further mechanism studies revealed that C10 likely serves as an Fli-1 agonist for regulating the expression of Fli-1 target genes including phosphatidylinositol 3-kinase (P110), murine double minute2 (MDM2), B-cell lymphoma-2 (Bcl-2), Src homology-2 domain-containing inositol 5-phosphatase 1 (SHIP-1), and globin transcription factor-1 (Gata-1) as well as the phosphorylation of extracellular-regulated protein kinases 1 (ERK1). Further, we confirmed that C10 can regulate the expressions of vascular endothelial growth factor 1 (VEGF-1), transforming growth factor-β2 (TGF-β2), intercellular cell adhesion molecule-1 (ICAM-1), p53, and matrix metalloproteinase 1 (MMP-1) genes associated with tumor apoptosis, migration, and invasion. Thus, C10 exhibits stronger anticancer activity with novel molecular targets and regulatory molecular mechanisms, indicating its great potency for development as a novel targeted anticancer drug.
Collapse
Affiliation(s)
- Youfen Ma
- State key laboratory of functions and applications of medicinal plants, Guizhou medical university, Guiyang 550014, China; (Y.M.); (B.X.); (J.Y.); (X.Z.); (X.S.)
- College of pharmacy, Guizhou Medical University, Guiyang 550029, China
| | - Bixue Xu
- State key laboratory of functions and applications of medicinal plants, Guizhou medical university, Guiyang 550014, China; (Y.M.); (B.X.); (J.Y.); (X.Z.); (X.S.)
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, China
| | - Jia Yu
- State key laboratory of functions and applications of medicinal plants, Guizhou medical university, Guiyang 550014, China; (Y.M.); (B.X.); (J.Y.); (X.Z.); (X.S.)
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, China
| | - Lirong Huang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China;
| | - Xiaoping Zeng
- State key laboratory of functions and applications of medicinal plants, Guizhou medical university, Guiyang 550014, China; (Y.M.); (B.X.); (J.Y.); (X.Z.); (X.S.)
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, China
| | - Xiangchun Shen
- State key laboratory of functions and applications of medicinal plants, Guizhou medical university, Guiyang 550014, China; (Y.M.); (B.X.); (J.Y.); (X.Z.); (X.S.)
- College of pharmacy, Guizhou Medical University, Guiyang 550029, China
| | - Chunyan Ren
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Yaacov Ben-David
- State key laboratory of functions and applications of medicinal plants, Guizhou medical university, Guiyang 550014, China; (Y.M.); (B.X.); (J.Y.); (X.Z.); (X.S.)
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, China
| | - Heng Luo
- State key laboratory of functions and applications of medicinal plants, Guizhou medical university, Guiyang 550014, China; (Y.M.); (B.X.); (J.Y.); (X.Z.); (X.S.)
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, China
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
7
|
Sirtuin-1 and Its Relevance in Vascular Calcification. Int J Mol Sci 2020; 21:ijms21051593. [PMID: 32111067 PMCID: PMC7084838 DOI: 10.3390/ijms21051593] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
Vascular calcification (VC) is highly associated with cardiovascular disease and all-cause mortality in patients with chronic kidney disease. Dysregulation of endothelial cells and vascular smooth muscle cells (VSMCs) is related to VC. Sirtuin-1 (Sirt1) deacetylase encompasses a broad range of transcription factors that are linked to an extended lifespan. Sirt1 enhances endothelial NO synthase and upregulates FoxOs to activate its antioxidant properties and delay cell senescence. Sirt1 reverses osteogenic phenotypic transdifferentiation by influencing RUNX2 expression in VSMCs. Low Sirt1 hardly prevents acetylation by p300 and phosphorylation of β-catenin that, following the facilitation of β-catenin translocation, drives osteogenic phenotypic transdifferentiation. Hyperphosphatemia induces VC by osteogenic conversion, apoptosis, and senescence of VSMCs through the Pit-1 cotransporter, which can be retarded by the sirt1 activator resveratrol. Proinflammatory adipocytokines released from dysfunctional perivascular adipose tissue (PVAT) mediate medial calcification and arterial stiffness. Sirt1 ameliorates release of PVAT adipokines and increases adiponectin secretion, which interact with FoxO 1 against oxidative stress and inflammatory arterial insult. Conclusively, Sirt1 decelerates VC by means of influencing endothelial NO bioavailability, senescence of ECs and VSMCs, osteogenic phenotypic transdifferentiation, apoptosis of VSMCs, ECM deposition, and the inflammatory response of PVAT. Factors that aggravate VC include vitamin D deficiency-related macrophage recruitment and further inflammation responses. Supplementation with vitamin D to adequate levels is beneficial in improving PVAT macrophage infiltration and local inflammation, which further prevents VC.
Collapse
|
8
|
microRNA: The Impact on Cancer Stemness and Therapeutic Resistance. Cells 2019; 9:cells9010008. [PMID: 31861404 PMCID: PMC7016867 DOI: 10.3390/cells9010008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer ranks as the second leading cause of death worldwide, causing a large social and economic burden. However, most anti-cancer treatments face the problems of tumor recurrence and metastasis. Therefore, finding an effective cure for cancer needs to be solved urgently. Recently, the discovery of cancer stem cells (CSCs) provides a new orientation for cancer research and therapy. CSCs share main characteristics with stem cells and are able to generate an entire tumor. Besides, CSCs usually escape from current anti-cancer therapies, which is partly responsible for tumor recurrence and poor prognosis. microRNAs (miRNAs) belong to small noncoding RNA and regulate gene post-transcriptional expression. The dysregulation of miRNAs leads to plenty of diseases, including cancer. The aberrant miRNA expression in CSCs enhances stemness maintenance. In this review, we summarize the role of miRNAs on CSCs in the eight most common cancers, hoping to bridge the research of miRNAs and CSCs with clinical applications. We found that miRNAs can act as tumor promoter or suppressor. The dysregulation of miRNAs enhances cell stemness and contributes to tumor metastasis and therapeutic resistance via the formation of feedback loops and constitutive activation of carcinogenic signaling pathways. More importantly, some miRNAs may be potential targets for diagnosis, prognosis, and cancer treatments.
Collapse
|
9
|
Eren G, Bruno A, Guntekin-Ergun S, Cetin-Atalay R, Ozgencil F, Ozkan Y, Gozelle M, Kaya SG, Costantino G. Pharmacophore modeling and virtual screening studies to identify novel selective SIRT2 inhibitors. J Mol Graph Model 2019; 89:60-73. [DOI: 10.1016/j.jmgm.2019.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/15/2019] [Accepted: 02/27/2019] [Indexed: 12/12/2022]
|
10
|
Fujita Y, Yamashita T. Sirtuins in Neuroendocrine Regulation and Neurological Diseases. Front Neurosci 2018; 12:778. [PMID: 30416425 PMCID: PMC6213750 DOI: 10.3389/fnins.2018.00778] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Silent information regulator 1 (SIRT1) is a mammalian homolog of the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin family. Sirtuin was originally studied as the lifespan-extending gene, silent information regulator 2 (SIRT2) in budding yeast. There are seven mammalian homologs of sirtuin (SIRT1–7), and SIRT1 is the closest homolog to SIRT2. SIRT1 modulates various key targets via deacetylation. In addition to histones, these targets include transcription factors, such as forkhead box O (FOXO), Ku70, p53, NF-κB, PPAR-gamma co-activator 1-alpha (PGC-1α), and peroxisome proliferator-activated receptor γ (PPARγ). SIRT1 has many biological functions, including aging, cell survival, differentiation, and metabolism. Genetic and physiological analyses in animal models have shown beneficial roles for SIRT1 in the brain during both development and adulthood. Evidence from in vivo and in vitro studies have revealed that SIRT1 regulates the cellular fate of neural progenitors, axon elongation, dendritic branching, synaptic plasticity, and endocrine function. In addition to its importance in physiological processes, SIRT1 has also been implicated in protection of neurons from degeneration in models of neurological diseases, such as traumatic brain injury and Alzheimer’s disease. In this review, we focus on the role of SIRT1 in the neuroendocrine system and neurodegenerative diseases. We also discuss the potential therapeutic implications of targeting the sirtuin pathway.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
11
|
Imperatore F, Maurizio J, Vargas Aguilar S, Busch CJ, Favret J, Kowenz-Leutz E, Cathou W, Gentek R, Perrin P, Leutz A, Berruyer C, Sieweke MH. SIRT1 regulates macrophage self-renewal. EMBO J 2017; 36:2353-2372. [PMID: 28701484 DOI: 10.15252/embj.201695737] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022] Open
Abstract
Mature differentiated macrophages can self-maintain by local proliferation in tissues and can be extensively expanded in culture under specific conditions, but the mechanisms of this phenomenon remain only partially defined. Here, we show that SIRT1, an evolutionary conserved regulator of life span, positively affects macrophage self-renewal ability in vitro and in vivo Overexpression of SIRT1 during bone marrow-derived macrophage differentiation increased their proliferative capacity. Conversely, decrease of SIRT1 expression by shRNA inactivation, CRISPR/Cas9 mediated deletion and pharmacological inhibition restricted macrophage self-renewal in culture. Furthermore, pharmacological SIRT1 inhibition in vivo reduced steady state and cytokine-induced proliferation of alveolar and peritoneal macrophages. Mechanistically, SIRT1 inhibition negatively regulated G1/S transition, cell cycle progression and a network of self-renewal genes. This included inhibition of E2F1 and Myc and concomitant activation of FoxO1, SIRT1 targets mediating cell cycle progression and stress response, respectively. Our findings indicate that SIRT1 is a key regulator of macrophage self-renewal that integrates cell cycle and longevity pathways. This suggests that macrophage self-renewal might be a relevant parameter of ageing.
Collapse
Affiliation(s)
| | - Julien Maurizio
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Stephanie Vargas Aguilar
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France.,Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), Berlin, Germany
| | - Clara J Busch
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), Berlin, Germany
| | - Jérémy Favret
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France.,Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), Berlin, Germany
| | - Elisabeth Kowenz-Leutz
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), Berlin, Germany
| | - Wilfried Cathou
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Rebecca Gentek
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Pierre Perrin
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Achim Leutz
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), Berlin, Germany
| | - Carole Berruyer
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Michael H Sieweke
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France .,Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), Berlin, Germany
| |
Collapse
|
12
|
Resveratrol inhibits BK-induced COX-2 transcription by suppressing acetylation of AP-1 and NF-κB in human rheumatoid arthritis synovial fibroblasts. Biochem Pharmacol 2017; 132:77-91. [DOI: 10.1016/j.bcp.2017.03.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/07/2017] [Indexed: 01/27/2023]
|
13
|
Chen GD, Yu WD, Chen XP. SirT1 activator represses the transcription of TNF‑α in THP‑1 cells of a sepsis model via deacetylation of H4K16. Mol Med Rep 2016; 14:5544-5550. [PMID: 27878240 PMCID: PMC5355689 DOI: 10.3892/mmr.2016.5942] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/12/2016] [Indexed: 01/27/2023] Open
Abstract
Sepsis is a systemic inflammatory response resulting from the excessive production of pro-inflammatory cytokines, including tumor necrosis factor (TNF)‑α. Sirtuin 1 (SirT1) actively deacetylates histone proteins, and facilitates chromatin compaction and gene silencing. In the present study, a cell model of sepsis, comprising lipopolysaccharide (LPS)‑tolerant THP‑1 cells, was used to investigate whether the SirT1 activator, resveratrol, repressed the transcription of TNF‑α. Chromatin immunoprecipitation and real‑time PCR were used to determine the transcription of the TNF‑α promoter. The result revealed that the binding of SirT1 to the TNF‑α promoter was decreased by LPS stimulation in normal cells. However, in LPS‑tolerant cells, nuclear protein levels of SirT1 remained elevated, and LPS stimulation had no significant effect on the binding of SirT1 to the TNF‑α promoter. However, the activity of SirT1 was increased and binding of ace‑H4K16 to the TNF‑α promoter was decreased with resveratrol treatment in the tolerant cells. It was concluded that resveratrol stimulated sirtuin activity in LPS‑tolerant THP‑1 cells, and repressed TNF‑α transcription through the deacetylation of H4K16, without affecting the methylation of H3K9. Resveratrol offers potential as an infective candidate to alleviate inflammation in patients with sepsis.
Collapse
Affiliation(s)
- Guo-Dong Chen
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Wei-Dong Yu
- Central Laboratory, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Xiao-Ping Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Nosocomial Infection, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| |
Collapse
|
14
|
Kay LJ, Smulders-Srinivasan TK, Soundararajan M. Understanding the Multifaceted Role of Human Down Syndrome Kinase DYRK1A. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:127-71. [PMID: 27567487 DOI: 10.1016/bs.apcsb.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The dual-specificity tyrosine (Y) phosphorylation-regulated kinase DYRK1A, also known as Down syndrome (DS) kinase, is a dosage-dependent signaling kinase that was originally shown to be highly expressed in DS patients as a consequence of trisomy 21. Although this was evident some time ago, it is only in recent investigations that the molecular roles of DYRK1A in a wide range of cellular processes are becoming increasingly apparent. Since initial knowledge on DYRK1A became evident through minibrain mnb, the Drosophila homolog of DYRK1A, this review will first summarize the scientific reports on minibrain and further expand on the well-established neuronal functions of mammalian and human DYRK1A. Recent investigations across the current decade have provided rather interesting and compelling evidence in establishing nonneuronal functions for DYRK1A, including its role in infection, immunity, cardiomyocyte biology, cancer, and cell cycle control. The latter part of this review will therefore focus in detail on the emerging nonneuronal functions of DYRK1A and summarize the regulatory role of DYRK1A in controlling Tau and α-synuclein. Finally, the emerging role of DYRK1A in Parkinson's disease will be outlined.
Collapse
Affiliation(s)
- L J Kay
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - T K Smulders-Srinivasan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - M Soundararajan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
15
|
Sheahan AV, Sekar TV, Chen K, Paulmurugan R, Massoud TF. A molecular imaging biosensor detects in vivo protein folding and misfolding. J Mol Med (Berl) 2016; 94:799-808. [PMID: 27277823 DOI: 10.1007/s00109-016-1437-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/08/2016] [Accepted: 06/02/2016] [Indexed: 12/23/2022]
Abstract
UNLABELLED Aberrant protein folding represents the molecular basis of many important human diseases. Although the discovery of new anti-misfolding drugs is a major priority in molecular therapeutics, there is currently no generalizable protein folding assay for use in cell-based high throughput screening (HTS) of chemical libraries, or for in vivo imaging. We molecularly engineered a bioluminescence-based biosensor composed of rationally split Firefly luciferase reporter fragments flanking a test protein, and used this in a protein-fragment complementation assay to quantitatively measure folding of the test protein. We comprehensively validated this biosensor in vitro, in cells, and by optically imaging protein folding and misfolding in living mice using several test proteins including enhanced green fluorescent protein, Renilla luciferase, Gaussia luciferase, and SIRT1. Applications of this novel biosensor are potentially far-reaching in both cell-based HTS approaches to discover new anti-misfolding drugs, and when using the same biosensor in validation studies of drug candidates in small animal models. KEY MESSAGES Novel anti-misfolding drugs are needed as molecular therapeutics for many diseases. We developed first in vivo imaging protein folding biosensor to aid drug discovery. Biosensor created by flanking a test protein with rationally split Firefly luciferase. Biosensor validated by detecting folding of test proteins EGFP, Rluc, Gluc, and SIRT1. Generalizable molecular biosensor for translational applications in drug screening.
Collapse
Affiliation(s)
- Anjali V Sheahan
- Laboratory of Experimental and Molecular Neuroimaging, Molecular Imaging Program at Stanford (MIPS), and Bio-X Program, Stanford University School of Medicine, Stanford, CA, 94305-5427, USA
| | - Thillai V Sekar
- Laboratory of Experimental and Molecular Neuroimaging, Molecular Imaging Program at Stanford (MIPS), and Bio-X Program, Stanford University School of Medicine, Stanford, CA, 94305-5427, USA
| | - Kai Chen
- Laboratory of Experimental and Molecular Neuroimaging, Molecular Imaging Program at Stanford (MIPS), and Bio-X Program, Stanford University School of Medicine, Stanford, CA, 94305-5427, USA
| | - Ramasamy Paulmurugan
- Laboratory of Experimental and Molecular Neuroimaging, Molecular Imaging Program at Stanford (MIPS), and Bio-X Program, Stanford University School of Medicine, Stanford, CA, 94305-5427, USA.
| | - Tarik F Massoud
- Laboratory of Experimental and Molecular Neuroimaging, Molecular Imaging Program at Stanford (MIPS), and Bio-X Program, Stanford University School of Medicine, Stanford, CA, 94305-5427, USA.
| |
Collapse
|
16
|
De la Fuente IM. Elements of the cellular metabolic structure. Front Mol Biosci 2015; 2:16. [PMID: 25988183 PMCID: PMC4428431 DOI: 10.3389/fmolb.2015.00016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/12/2015] [Indexed: 12/19/2022] Open
Abstract
A large number of studies have demonstrated the existence of metabolic covalent modifications in different molecular structures, which are able to store biochemical information that is not encoded by DNA. Some of these covalent mark patterns can be transmitted across generations (epigenetic changes). Recently, the emergence of Hopfield-like attractor dynamics has been observed in self-organized enzymatic networks, which have the capacity to store functional catalytic patterns that can be correctly recovered by specific input stimuli. Hopfield-like metabolic dynamics are stable and can be maintained as a long-term biochemical memory. In addition, specific molecular information can be transferred from the functional dynamics of the metabolic networks to the enzymatic activity involved in covalent post-translational modulation, so that determined functional memory can be embedded in multiple stable molecular marks. The metabolic dynamics governed by Hopfield-type attractors (functional processes), as well as the enzymatic covalent modifications of specific molecules (structural dynamic processes) seem to represent the two stages of the dynamical memory of cellular metabolism (metabolic memory). Epigenetic processes appear to be the structural manifestation of this cellular metabolic memory. Here, a new framework for molecular information storage in the cell is presented, which is characterized by two functionally and molecularly interrelated systems: a dynamic, flexible and adaptive system (metabolic memory) and an essentially conservative system (genetic memory). The molecular information of both systems seems to coordinate the physiological development of the whole cell.
Collapse
Affiliation(s)
- Ildefonso M. De la Fuente
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra,” Consejo Superior de Investigaciones CientíficasGranada, Spain
- Department of Mathematics, University of the Basque Country, UPV/Euskal Herriko UnibertsitateaLeioa, Spain
| |
Collapse
|
17
|
Vyas VK, Goel A, Ghate M, Patel P. Ligand and structure-based approaches for the identification of SIRT1 activators. Chem Biol Interact 2015; 228:9-17. [PMID: 25595223 DOI: 10.1016/j.cbi.2015.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/05/2014] [Accepted: 01/02/2015] [Indexed: 01/18/2023]
Abstract
SIRT1 is a NAD(+)-dependent deacetylase that involved in various important metabolic pathways. Combined ligand and structure-based approach was utilized for identification of SIRT1 activators. Pharmacophore models were developed using DISCOtech and refined with GASP module of Sybyl X software. Pharmacophore models were composed of two hydrogen bond acceptor (HBA) atoms, two hydrogen bond donor (HBD) sites and one hydrophobic (HY) feature. The pharmacophore models were validated through receiver operating characteristic (ROC) and Güner-Henry (GH) scoring methods. Model-2 was selected as best model among the model 1-3, based on ROC and GH score value, and found reliable in identification of SIRT1 activators. Model-2 (3D search query) was searched against Zinc database. Several compounds with different chemical scaffold were retrieved as hits. Currently, there is no experimental SIRT1 3D structure available, therefore, we modeled SIRT1 protein structure using homology modeling. Compounds with Qfit value of more than 86 were selected for docking study into the SIRT1 homology model to explore the binding mode of retrieved hits in the active allosteric site. Finally, in silico ADMET prediction study was performed with two best docked compounds. Combination of ligand and structure-based modeling methods identified active hits, which may be good lead compounds to develop novel SIRT1 activators.
Collapse
Affiliation(s)
- Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, Gujarat, India.
| | - Ashutosh Goel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, Gujarat, India
| | - Manjunath Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, Gujarat, India
| | - Palak Patel
- Institute of Science, Nirma University, Ahmedabad 382 481, Gujarat, India
| |
Collapse
|
18
|
Pulla VK, Alvala M, Sriram DS, Viswanadha S, Sriram D, Yogeeswari P. Structure-based drug design of small molecule SIRT1 modulators to treat cancer and metabolic disorders. J Mol Graph Model 2014; 52:46-56. [DOI: 10.1016/j.jmgm.2014.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/05/2014] [Accepted: 06/17/2014] [Indexed: 11/29/2022]
|
19
|
Caron AZ, He X, Mottawea W, Seifert EL, Jardine K, Dewar-Darch D, Cron GO, Harper ME, Stintzi A, McBurney MW. The SIRT1 deacetylase protects mice against the symptoms of metabolic syndrome. FASEB J 2013; 28:1306-16. [PMID: 24297700 DOI: 10.1096/fj.13-243568] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes, hepatic steatosis, and gut dysbiosis are pathophysiological consequences of obesity. Sirtuin (SIRT)-1 is a protein deacetylase implicated in the regulation of metabolic activity. We set out to determine whether the catalytic activity of SIRT1 plays a role in the development of metabolic syndrome, hepatic steatosis, and the distribution of gut microbiota. We challenged with a high-fat diet (HFD) a strain of mice homozygous for a Sirt1 allele carrying a point mutation that ablates the deacetylase activity of SIRT1. When compared to wild-type animals, mice lacking SIRT1 catalytic activity rapidly accumulated excessive hepatic lipid while fed the HFD, an effect evident within 2 wk of HFD feeding. Both white and brown adipose depots became hypertrophic, and the animals developed insulin resistance. The ratio of the major phyla of gut microbiota (Firmicutes and Bacteroidetes) increased rapidly in the SIRT1-deficient mice after HFD challenge. We conclude that the deacetylase activity of SIRT1 plays an important role in regulating glucose and hepatic lipid homeostasis. In addition, the composition of gut microbiota is influenced by both the animals' Sirt1 genotype and diet composition.
Collapse
Affiliation(s)
- Annabelle Z Caron
- 1Program in Cancer Therapeutics, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Box 926, 501 Smyth Road, Ottawa, ON, Canada K1H 8L6.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Clark-Knowles KV, Dewar-Darch D, Jardine KE, McBurney MW. SIRT1 catalytic activity has little effect on tumor formation and metastases in a mouse model of breast cancer. PLoS One 2013; 8:e82106. [PMID: 24278473 PMCID: PMC3836945 DOI: 10.1371/journal.pone.0082106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/27/2013] [Indexed: 12/23/2022] Open
Abstract
The protein deacetylase SIRT1 has been implicated in the regulation of a large number of cellular processes that are thought to be required for cancer initiation and progression. There are conflicting data that make it unclear whether Sirt1 functions as an oncogene or tumor suppressor. To assess the effect of SIRT1 on the emergence and progression of mammary tumors, we crossed mice that harbor a point mutation that abolishes SIRT1 catalytic activity with mice carrying the polyoma middle T transgene driven by the murine mammary tumor virus promoter (MMTV-PyMT). The absence of SIRT1 catalytic activity neither accelerated nor blocked the formation of tumors and metastases in this model. There was a lag in tumor latency that modestly extended survival in Sirt1 mutant mice that we attribute to a delay in mammary gland development and not to a direct effect of SIRT1 on carcinogenesis. These results are consistent with previous evidence suggesting that Sirt1 is not a tumor promoter or a tumor suppressor.
Collapse
Affiliation(s)
| | - Danielle Dewar-Darch
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Karen E. Jardine
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael W. McBurney
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Abstract
NAD(+)-dependent deacetylase SIRT1 is a master regulator of nucleosome positioning and chromatin structure, thereby reprogramming gene expression. In acute inflammation, chromatin departs from, and returns to, homeostasis in an orderly sequence. This sequence depends on shifts in NAD(+) availability for SIRT1 activation and deacetylation of signaling proteins, which support orderly gene reprogramming during acute inflammation by switching between euchromatin and heterochromatin. In contrast, in chronic inflammation and cancer, limited availability of NAD(+) and reduced expression of SIRT1 may sustain aberrant chromatin structure and functions. SIRT1 also influences inflammation and cancer by directly deacetylating targets like NFκB p65 and p53. Here, we review SIRT1 in the context of inflammation and cancer.
Collapse
Affiliation(s)
- Tie Fu Liu
- Molecular Medicine Section, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
22
|
McBurney MW, Clark-Knowles KV, Caron AZ, Gray DA. SIRT1 is a Highly Networked Protein That Mediates the Adaptation to Chronic Physiological Stress. Genes Cancer 2013; 4:125-34. [PMID: 24020004 DOI: 10.1177/1947601912474893] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
SIRT1 is a NAD(+)-dependent protein deacetylase that has a very large number of established protein substrates and an equally impressive list of biological functions thought to be regulated by its activity. Perhaps as notable is the remarkable number of points of conflict concerning the role of SIRT1 in biological processes. For example, evidence exists suggesting that SIRT1 is a tumor suppressor, is an oncogene, or has no effect on oncogenesis. Similarly, SIRT1 is variably reported to induce, inhibit, or have no effect on autophagy. We believe that the resolution of many conflicting results is possible by considering recent reports indicating that SIRT1 is an important hub interacting with a complex network of proteins that collectively regulate a wide variety of biological processes including cancer and autophagy. A number of the interacting proteins are themselves hubs that, like SIRT1, utilize intrinsically disordered regions for their promiscuous interactions. Many studies investigating SIRT1 function have been carried out on cell lines carrying undetermined numbers of alterations to the proteins comprising the SIRT1 network or on inbred mouse strains carrying fixed mutations affecting some of these proteins. Thus, the effects of modulating SIRT1 amount and/or activity are importantly determined by the genetic background of the cell (or the inbred strain of mice), and the effects attributed to SIRT1 are synthetic with the background of mutations and epigenetic differences between cells and organisms. Work on mice carrying alterations to the Sirt1 gene suggests that the network in which SIRT1 functions plays an important role in mediating physiological adaptation to various sources of chronic stress such as calorie restriction and calorie overload. Whether the catalytic activity of SIRT1 and the nuclear concentration of the co-factor, NAD(+), are responsible for modulating this activity remains to be determined. However, the effect of modulating SIRT1 activity must be interpreted in the context of the cell or tissue under investigation. Indeed, for SIRT1, we argue that context is everything.
Collapse
Affiliation(s)
- Michael W McBurney
- Program in Cancer Therapeutics, Ottawa Hospital Research Institute ; Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
23
|
Sharma A, Costantini S, Colonna G. The protein-protein interaction network of the human Sirtuin family. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1998-2009. [PMID: 23811471 DOI: 10.1016/j.bbapap.2013.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 05/31/2013] [Accepted: 06/18/2013] [Indexed: 12/15/2022]
Abstract
Protein-protein interaction networks are useful for studying human diseases and to look for possible health care through a holistic approach. Networks are playing an increasing and important role in the understanding of physiological processes such as homeostasis, signaling, spatial and temporal organizations, and pathological conditions. In this article we show the complex system of interactions determined by human Sirtuins (Sirt) largely involved in many metabolic processes as well as in different diseases. The Sirtuin family consists of seven homologous Sirt-s having structurally similar cores but different terminal segments, being rather variable in length and/or intrinsically disordered. Many studies have determined their cellular location as well as biological functions although molecular mechanisms through which they act are actually little known therefore, the aim of this work was to define, explore and understand the Sirtuin-related human interactome. As a first step, we have integrated the experimentally determined protein-protein interactions of the Sirtuin-family as well as their first and second neighbors to a Sirtuin-related sub-interactome. Our data showed that the second-neighbor network of Sirtuins encompasses 25% of the entire human interactome, and exhibits a scale-free degree distribution and interconnectedness among top degree nodes. Moreover, the Sirtuin sub interactome showed a modular structure around the core comprising mixed functions. Finally, we extracted from the Sirtuin sub-interactome subnets related to cancer, aging and post-translational modifications for information on key nodes and topological space of the subnets in the Sirt family network.
Collapse
Affiliation(s)
- Ankush Sharma
- Biochemistry, Biophysics and General Pathology Department, Second University of Naples, Naples, Italy
| | | | | |
Collapse
|
24
|
Costantini S, Sharma A, Raucci R, Costantini M, Autiero I, Colonna G. Genealogy of an ancient protein family: the Sirtuins, a family of disordered members. BMC Evol Biol 2013; 13:60. [PMID: 23497088 PMCID: PMC3599600 DOI: 10.1186/1471-2148-13-60] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 02/25/2013] [Indexed: 12/21/2022] Open
Abstract
Background Sirtuins genes are widely distributed by evolution and have been found in eubacteria, archaea and eukaryotes. While prokaryotic and archeal species usually have one or two sirtuin homologs, in humans as well as in eukaryotes we found multiple versions and in mammals this family is comprised of seven different homologous proteins being all NAD-dependent de-acylases. 3D structures of human SIRT2, SIRT3, and SIRT5 revealed the overall conformation of the conserved core domain but they were unable to give a structural information about the presence of very flexible and dynamically disordered regions, the role of which is still structurally and functionally unclear. Recently, we modeled the 3D-structure of human SIRT1, the most studied member of this family, that unexpectedly emerged as a member of the intrinsically disordered proteins with its long disordered terminal arms. Despite clear similarities in catalytic cores between the human sirtuins little is known of the general structural characteristics of these proteins. The presence of disorder in human SIRT1 and the propensity of these proteins in promoting molecular interactions make it important to understand the underlying mechanisms of molecular recognition that reasonably should involve terminal segments. The mechanism of recognition, in turn, is a prerequisite for the understanding of any functional activity. Aim of this work is to understand what structural properties are shared among members of this family in humans as well as in other organisms. Results We have studied the distribution of the structural features of N- and C-terminal segments of sirtuins in all known organisms to draw their evolutionary histories by taking into account average length of terminal segments, amino acid composition, intrinsic disorder, presence of charged stretches, presence of putative phosphorylation sites, flexibility, and GC content of genes. Finally, we have carried out a comprehensive analysis of the putative phosphorylation sites in human sirtuins confirming those sites already known experimentally for human SIRT1 and 2 as well as extending their topology to all the family to get feedback of their physiological functions and cellular localization. Conclusions Our results highlight that the terminal segments of the majority of sirtuins possess a number of structural features and chemical and physical properties that strongly support their involvement in activities of recognition and interaction with other protein molecules. We also suggest how a multisite phosphorylation provides a possible mechanism by which flexible and intrinsically disordered segments of a sirtuin supported by the presence of positively or negatively charged stretches might enhance the strength and specificity of interaction with a particular molecular partner.
Collapse
Affiliation(s)
- Susan Costantini
- "Pascale Foundation" National Cancer Institute - Cancer Research Center (CROM), via Ammiraglio Bianco, 83013, Mercogliano, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Rusolo F, Pucci B, Colonna G, Capone F, Guerriero E, Milone MR, Nazzaro M, Volpe MG, Di Bernardo G, Castello G, Costantini S. Evaluation of selenite effects on selenoproteins and cytokinome in human hepatoma cell lines. Molecules 2013; 18:2549-2562. [PMID: 23442931 PMCID: PMC6270443 DOI: 10.3390/molecules18032549] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 12/18/2022] Open
Abstract
The need to explore new alternative therapeutic strategies and chemoprevention methods for hepatocellular carcinoma is growing significantly. Selenium is a trace element that plays a critical role in physiological processes, and is used in cancer chemoprevention. The aim of this work was to test in vitro the effect of sodium selenite on the human hepatoma cell lines, HepG2 and Huh7, to assess its effect on the expression of GPX1, SELK and SELENBP1 and also to evaluate its action on inflammation determinants such as cytokines. Our results show that: (i) the increase observed for the GPX1 and SELK expression is correlated with an increase in the sodium selenite concentration, also evidencing an inverse association between the levels of these two proteins and SELENBP1; (ii) the selenium concentrations evaluated in protein extracts increase in proportional way with the selenite concentrations used in the treatment, suggesting that other selenoproteins can also be modulated and should be evaluated in further studies, and (iii) some cytokines, VEGF and three pro-inflammatory cytokines, i.e., IL-6, IL-8, and IL-17, decreased with an increasing selenite concentration. Finally, interactomic studies show that GPX1 and SELK, and the four pro-inflammatory cytokines are functionally correlated evidencing a putative anti-inflammatory role for the selenite.
Collapse
Affiliation(s)
- Fabiola Rusolo
- Cancer Research Center, “Pascale Foundation” National Cancer Institute, Mercogliano (AV) 83013, Italy
| | - Biagio Pucci
- Cancer Research Center, “Pascale Foundation” National Cancer Institute, Mercogliano (AV) 83013, Italy
| | - Giovanni Colonna
- Biochemistry, Biophysic and General Pathology Department, Second University of Naples, Naples 80138, Italy
| | - Francesca Capone
- Cancer Research Center, “Pascale Foundation” National Cancer Institute, Mercogliano (AV) 83013, Italy
| | - Eliana Guerriero
- Cancer Research Center, “Pascale Foundation” National Cancer Institute, Mercogliano (AV) 83013, Italy
| | - Maria Rita Milone
- Cancer Research Center, “Pascale Foundation” National Cancer Institute, Mercogliano (AV) 83013, Italy
| | | | | | - Gianni Di Bernardo
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Faculty of Medicine, Second University of Naples, Naples 80138, Italy
| | - Giuseppe Castello
- Cancer Research Center, “Pascale Foundation” National Cancer Institute, Mercogliano (AV) 83013, Italy
| | - Susan Costantini
- Cancer Research Center, “Pascale Foundation” National Cancer Institute, Mercogliano (AV) 83013, Italy
| |
Collapse
|