1
|
Jiang H, Wang Y, Duan X, Guo S, Fan X, Zhou T, Li J, He J, Yang J, Jin H. Spatially Resolved Metabolomics and Network Pharmacology Reveal Extract D Nephrotoxicity Mechanisms in Pleuropterus multiflorus Thunb. TOXICS 2025; 13:182. [PMID: 40137509 PMCID: PMC11946316 DOI: 10.3390/toxics13030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
As a traditional Chinese medicine, the adverse hepatotoxicity effects of Pleuropterus multiflorus (Thunb.) Nakai (PM) have been documented. However, nephrotoxicity has been neglected as studies related to kidney toxicity mechanisms are limited. Our previous research reported that extract D [95% ethanol (EtOH) elution, PM-D] in a 70% EtOH PM extract showed more significant hepatotoxicity than other extracts. In the current study, PM-D was continuously administered to mice for 7 days at a dose of 2 g/kg (equivalent to a human dose of 219.8 mg/kg), which increased renal biochemical indexes and caused pathological kidney injury, suggesting renal toxicity. Therefore, network pharmacology and spatially resolved metabolomics were conducted to explore nephrotoxicity mechanisms underpinning PM-D. Network pharmacology indicated that BCL2, HSP90, ESR1, and CTNNB1 genes were core targets, while the phosphoinositide 3-kinase (PI3K)/protein kinase B(AKT)/signaling pathway was significantly enriched. Spatially resolved metabolomics indicated heterogeneous metabolite distribution in the kidney, further indicating that PM-D nephrotoxic metabolic pathways were enriched for α-linolenic acid and linoleic acid metabolism, pyrimidine metabolism, carnitine synthesis, and branched-chain fatty acid oxidation. Our comprehensive analyses highlighted that nephrotoxicity mechanisms were related to oxidative stress and apoptosis induced by disordered energy metabolism, lipid metabolism issues, and imbalanced nucleotide metabolism, which provide a platform for further research into PM nephrotoxicity mechanisms.
Collapse
Affiliation(s)
- Haiyan Jiang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.J.); (X.D.); (X.F.); (J.L.)
| | - Ying Wang
- National Institutes for Food and Drug Control, Beijing 102629, China;
| | - Xiaoyan Duan
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.J.); (X.D.); (X.F.); (J.L.)
| | - Shushu Guo
- Department of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Xiaoyu Fan
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.J.); (X.D.); (X.F.); (J.L.)
| | - Tianyu Zhou
- College of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China;
| | - Jie Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.J.); (X.D.); (X.F.); (J.L.)
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China;
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 102206, China
| | - Jianbo Yang
- National Institutes for Food and Drug Control, Beijing 102629, China;
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.J.); (X.D.); (X.F.); (J.L.)
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 102206, China
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China
| |
Collapse
|
2
|
Chen Y, Lu J, Xie Z, Tang J, Lian X, Li X. The Mechanism of Alisol B23 Acetate Inhibiting Lung Cancer: Targeted Regulation of CD11b/CD18 to Influence Macrophage Polarization. Drug Des Devel Ther 2022; 16:3677-3689. [PMID: 36277599 PMCID: PMC9583238 DOI: 10.2147/dddt.s375073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2022] [Indexed: 11/11/2022] Open
Abstract
Background Tumor microenvironment has attracted more and more attention in oncology. Alisol B23 acetate (AB23A) inhibits the proliferation of tumor cells including non-small cell lung cancer (NSCLC) cells. However, whether AB23A plays a role in the tumor microenvironment of NSCLC still remains obscure. Methods After THP-1 cells were polarized to M0 type by PMA, M0 macrophages were differentiated into M1 by LPS and IFNγ, and were differentiated into M2 by IL-4 and IL-13. The differentiation of THP-1 cells was detected by flow cytometry. After AB23A was given to macrophage RT-qPCR and ELISA detected the expressions of IL-6, IL-1β, IL-10 and TGF-β. Western blot and RT-qPCR detected the expressions of CD11b and CD18 at both mRNA and protein levels. Lung cancer cell A549 cells were induced by above related macrophage culture medium. Cell proliferation was detected by CCK-8. Tunel, wound healing and Transwell detected the apoptotic, migration and invasion capabilities. Next, M0 and M1-type macrophages were cultured in the cell culture medium of conventional A549 cells, to which AB23A was added. Subsequently, cell differentiation and inflammatory response were measured. Finally, the expression of CD18 in A549 cells was knocked down to construct NSCLC tumor-bearing mice and AB23A was applied for intragastric administration. Immunohistochemistry detected the polarization of macrophages in tumor tissues. Western blot detected the expressions of CD11b, CD18, invasion-, migration- and apoptosis-related proteins. Results AB23A promoted the polarization of macrophages towards M1, thus promoting the apoptosis and inhibiting the invasion and migration of A549 cells. The tumor cell culture medium induced M0 macrophages to M2, while AB23A reversed this effect. AB23A targeted CD11b/CD18 and improved the polarization of macrophages, thereby affecting tumor invasion, migration and apoptosis. Conclusion AB23A affected the polarization of tumor-associated macrophages through the targeted regulation of CD11b/CD18, thus inhibiting the development of lung cancer.
Collapse
Affiliation(s)
- Yingna Chen
- School of Pharmacy, School of Medicine, Changzhou University, Changzhou, Jiangsu, People’s Republic of China,Correspondence: Yingna Chen, School of Pharmacy, School of Medicine, Changzhou University, No. 21, Lake Gehu Road, Wujin District, Changzhou, Jiangsu, People’s Republic of China, Tel +86-13813661630, Email
| | - Jieya Lu
- Department of Nephrology, Yixing Hospital of Traditional Chinese Medicine, Yixing, Jiangsu, People’s Republic of China,Jieya Lu, Department of Nephrology, Yixing Hospital of Traditional Chinese Medicine, 128 Yangquan East Road, Yicheng Street, Yixing, Jiangsu, People’s Republic of China, Tel +86-15906153777, Email
| | - Zhihao Xie
- School of Pharmacy, School of Medicine, Changzhou University, Changzhou, Jiangsu, People’s Republic of China
| | - Jialing Tang
- School of Pharmacy, School of Medicine, Changzhou University, Changzhou, Jiangsu, People’s Republic of China
| | - Xuejiao Lian
- School of Pharmacy, School of Medicine, Changzhou University, Changzhou, Jiangsu, People’s Republic of China
| | - Xiuwen Li
- School of Pharmacy, School of Medicine, Changzhou University, Changzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
3
|
Bailly C. Pharmacological Properties and Molecular Targets of Alisol Triterpenoids from Alismatis Rhizoma. Biomedicines 2022; 10:biomedicines10081945. [PMID: 36009492 PMCID: PMC9406200 DOI: 10.3390/biomedicines10081945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
More than 100 protostane triterpenoids have been isolated from the dried rhizomes of Alisma species, designated Alismatis rhizoma (AR), commonly used in Asian traditional medicine to treat inflammatory and vascular diseases. The main products are the alisols, with the lead compounds alisol-A/-B and their acetate derivatives being the most abundant products in the plant and the best-known bioactive products. The pharmacological effects of Ali-A, Ali-A 24-acetate, Ali-B, Ali-B 23-acetate, and derivatives have been analyzed to provide an overview of the medicinal properties, signaling pathways, and molecular targets at the origin of those activities. Diverse protein targets have been proposed for these natural products, including the farnesoid X receptor, soluble epoxide hydrolase, and other enzymes (AMPK, HCE-2) and functional proteins (YAP, LXR) at the origin of the anti-atherosclerosis, anti-inflammatory, antioxidant, anti-fibrotic, and anti-proliferative activities. Activities were classified in two groups. The lipid-lowering and anti-atherosclerosis effects benefit from robust in vitro and in vivo data (group 1). The anticancer effects of alisols have been largely reported, but, essentially, studies using tumor cell lines and solid in vivo data are lacking (group 2). The survey shed light on the pharmacological properties of alisol triterpenoids frequently found in traditional phytomedicines.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille (Wasquehal), France
| |
Collapse
|
4
|
Zhu HC, Jia XK, Fan Y, Xu SH, Li XY, Huang MQ, Lan ML, Xu W, Wu SS. Alisol B 23-Acetate Ameliorates Azoxymethane/Dextran Sodium Sulfate-Induced Male Murine Colitis-Associated Colorectal Cancer via Modulating the Composition of Gut Microbiota and Improving Intestinal Barrier. Front Cell Infect Microbiol 2021; 11:640225. [PMID: 33996624 PMCID: PMC8117151 DOI: 10.3389/fcimb.2021.640225] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Hunting for natural compounds that can modulate the structure of the intestinal flora is a new hotspot for colitis‐associated cancer (CAC) prevention or treatment. Alisol B 23-acetate (AB23A) is a natural tetracyclic triterpenoid found in Alismatis rhizoma which is well known for dietary herb. Alismatis rhizoma is often used clinically to treat gastrointestinal diseases in China. In this study, we investigated the potential prevention of AB23A in male mouse models of azoxymethane (AOM) and dextran sulfate sodium (DSS)-induced CAC. AB23A intervention alleviated the body weight loss, disease activity index, colon tumor load, tissue injury, and inflammatory cytokine changes in CAC mice. AB23A intervention leads to remarkable reductions in the activation of TLR, NF-κB and MAPK. AB23A significantly decreased the phosphorylation of p38, ERK, and JNK and up-regulated mucin-2 and the expression of tight junction proteins. The gut microbiota of AB23A-interfered mice was characterized with high microbial diversity, the reduced expansion of pathogenic bacteria, such as Klebsiella, Citrobacter, and Akkermansia, and the increased growth of bacteria including Bacteroides, Lactobacillus, and Alloprevotella. These data reveal that AB23A has the potential to be used to treat CAC in the future.
Collapse
Affiliation(s)
- Huai-Chang Zhu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiao-Kang Jia
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yong Fan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shao-Hua Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiao-Yan Li
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ming-Qing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Meng-Liu Lan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wen Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shui-Sheng Wu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
5
|
Lou HX, Fu WC, Chen JX, Li TT, Jiang YY, Liu CH, Zhang W. Alisol A 24-acetate stimulates lipolysis in 3 T3-L1 adipocytes. BMC Complement Med Ther 2021; 21:128. [PMID: 33888116 PMCID: PMC8063434 DOI: 10.1186/s12906-021-03296-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/02/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Alisol A 24-acetate (AA-24-a), one of the main active triterpenes isolated from the well-known medicinal plant Alisma orientale (Sam.) Juz., exhibits multiple biological activities including hypolipidemic activity. However, its effect on lipid metabolism in adipocytes remains unclear. The present study aimed to clarify the effect of AA-24-a on adipocyte lipolysis and to determine its potential mechanism of action using 3 T3-L1 cells. METHODS We assayed the release of glycerol into culture medium of 3 T3-L1 cells under treatment with AA-24-a. Protein and mRNA expression and phosphorylation levels of the main lipases and kinases involved in lipolysis regulation were determined by quantitative polymerase chain reaction and western blotting. Specific inhibitors of protein kinase A (PKA; H89) and extracellular signal-regulated kinase (ERK; PD98059), which are key enzymes in relevant signaling pathways, were used to examine their roles in AA-24-a-stimulated lipolysis. RESULTS AA-24-a significantly stimulated neutral lipolysis in fully differentiated adipocytes. To determine the underlying mechanism, we assessed the changes in mRNA and protein levels of key lipolysis-related genes in the presence or absence of H89 and PD98059. Both inhibitors reduced AA-24-a-induced lipolysis. Moreover, pretreatment with H89 attenuated AA-24-a-induced phosphorylation of hormone-sensitive lipase at Ser660, while pretreatment with PD98059 attenuated AA-24-a-induced downregulation of peroxisome proliferator-activated receptor-γ and perilipin A. CONCLUSIONS Our results indicate that AA-24-a promoted neutral lipolysis in 3 T3-L1 adipocytes by activating PKA-mediated phosphorylation of hormone-sensitive lipase and ERK- mediated downregulation of expression of perilipin A.
Collapse
Affiliation(s)
- Hai-Xia Lou
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Wen-Cheng Fu
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jia-Xiang Chen
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Tian-Tian Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Ying-Ying Jiang
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Chun-Hui Liu
- China National Institute of Standardization, 4 Zhichun Road, Beijing, 100191, China.
| | - Wen Zhang
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
6
|
Alismatis Rhizoma Triterpenes Alleviate High-Fat Diet-Induced Insulin Resistance in Skeletal Muscle of Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8857687. [PMID: 33623531 PMCID: PMC7875633 DOI: 10.1155/2021/8857687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 01/17/2023]
Abstract
Alismatis rhizoma (AR), which is the dried rhizome of Alisma orientale (Sam.) Juz. (Alismataceae), is an important component of many famous Chinese formulas for hypoglycemic. This study aimed to evaluate the insulin resistance (IR) alleviating effects of AR triterpenes (ART) and ART component compatibility (ARTC, the mixture of 16-oxo-alisol A, 16-oxo-alisol A 23-acetate, 16-oxo-alisol A 24-acetate, alisol C, alisol C 23-acetate, alisol L, alisol A, alisol A 23-acetate, alisol A 24-acetate, alisol L 23-acetate, alisol B, alisol B 23-acetate, 11-deoxy-alisol B and 11-deoxy-alisol B 23-acetate) in high-fat diet-induced IR mice and plamitate-treated IR C2C12 cells, respectively. A dose of 200 mg/kg of ART was orally administered to IR mice, and different doses (25, 50, and 100 μg/ml) of ARTC groups were treated to IR C2C12 cells. IPGTT, IPITT, body weight, Hb1AC, FFA, TNF-α, MCP-1, and IR-associated gene expression (p-AMPK, p-IRS-1, PI3K, p-AKT, p-JNK, and GLUT4) were measured in IR mice. Glucose uptake, TNF-α, MCP-1, and IR-associated gene expression were also measured in IR C2C12 cells. Results showed that ART alleviated high-fat diet-induced IR in the skeletal muscle of mice, and this finding was further validated by ARTC. This study demonstrated that ART presented a notable IR alleviating effect by regulating IR-associated gene expression, and triterpenes were the material basis for the IR alleviating activity of AR.
Collapse
|
7
|
Wang B, Chen L, Dai L, Fang W, Wang H. Alisol B 23-Acetate Ameliorates Lipopolysaccharide-Induced Cardiac Dysfunction by Suppressing Toll-Like Receptor 4 (TLR4)/NADPH Oxidase 2 (NOX2) Signaling Pathway. Med Sci Monit 2019; 25:8472-8481. [PMID: 31707400 PMCID: PMC6863037 DOI: 10.12659/msm.918252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Cardiac dysfunction during endotoxemia is a major cause of cardiovascular disease with high morbidity and mortality. Alisol B 23-acetate (AB23A) is a triterpenoid extracted from the Rhizoma Alismatis, a kind of traditional Chinese medicine, exhibits anti-inflammatory activity on endotoxemia. This investigation aimed to uncover the protective effects of AB23A against sepsis-induced cardiac dysfunction. Material/Methods Adult male C57BL/6 mice received lipopolysaccharide (LPS) (20 mg/kg intravenous) stimulation, with or without pre-treatment of AB23A (10 mg/kg, 20 mg/kg, or 40 mg/kg). Histopathological staining and cardiac function were performed 4 hours after LPS stimulation. Then the levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α were monitored with enzyme-linked immunosorbent assay (ELISA). In addition, H9C2 cells were treated with LPS (5 μg/mL) with or without pre-treated with AB23A (0.1 μM, 1 μM, or 10 μM), and the production of reactive oxygen species (ROS) was detected by DCFH-DA combined with flow cytometry. The expression of Toll-like receptor 4 (TLR4), NADPH oxidase 2 (NOX2), NOX4, P38, p-P38, extracellular-signal-regulated kinase (ERK), and p-ERK were assessed by western blotting. Results AB23A improved the survival rate and ameliorated myocardial injury, decreased inflammatory infiltration and the level of IL-6, IL-1β, and TNF-α in the LPS-stimulated mouse model. Moreover, AB23A inhibited the ROS production in LPS-treated H9C2 cells. In addition, AB23A suppressed the levels of TLR4 and NOX2 as well as the activation levels of P38 and ERK both in vivo and in vitro. Conclusions AB23A reduced LPS-induced myocardial dysfunction by inhibiting inflammation and ROS production through the TLR4/NOX2 pathway.
Collapse
Affiliation(s)
- BinYan Wang
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Liang Chen
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - LingHao Dai
- Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - WenMing Fang
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Hui Wang
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
8
|
Liu Y, Xia XC, Meng LY, Wang Y, Li YM. Alisol B 23‑acetate inhibits the viability and induces apoptosis of non‑small cell lung cancer cells via PI3K/AKT/mTOR signal pathway. Mol Med Rep 2019; 20:1187-1195. [PMID: 31173235 PMCID: PMC6625381 DOI: 10.3892/mmr.2019.10355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 02/14/2019] [Indexed: 01/07/2023] Open
Abstract
The aim of the present study was to investigate the effects of alisol B 23‑acetate (AB23A) on inhibiting the viability and inducing apoptosis of human non‑small cell lung cancer (NSCLC) cells and the anticancer mechanisms of AB23A in vitro. The viability of A549 cells following treatment with different doses of AB23A was examined using a Cell Counting Kit‑8 assay. Subsequently, apoptosis and the cell cycle were detected using flow cytometric analysis. The effect of AB23A on migration and invasion of A549 cells was detected by wound healing and Transwell assays. Western blotting was performed to determine the relative expression of Bax/Bcl‑2, phosphatidylinositol 3‑kinase (PI3K), protein kinase B (AKT) and mammalian target of rapamycin (mTOR). AB23A markedly inhibited the viability enhanced apoptosis of A549 cells and arrested the cell cycle in G1 phase. Additionally, AB23A upregulated the ratio of Bax/Bcl‑2 in the A549 cells in a concentration‑dependent manner. The results of wound healing and Transwell assays indicated that AB23A also suppresses the migration and invasion ability of A549 cells. Furthermore, AB23A reduced the protein levels of phosphorylated AKT, PI3K and mTOR. In conclusion, AB23A exerted anti‑cancer activity via inhibiting cells viability, migration and invasion, and promoting apoptosis. Therefore, AB23A is a potential antitumor drug for the treatment of NSCLC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Medicine, Pingdingshan University, Pingdingshan, Henan 467000, P.R. China
| | - Xi-Chao Xia
- Department of Medicine, Pingdingshan University, Pingdingshan, Henan 467000, P.R. China
| | - Liu-Yang Meng
- Emergency Department, Pingdingshan Second People's Hospital, Pingdingshan, Henan 467000, P.R. China
| | - Yu Wang
- Department of Medicine, Pingdingshan University, Pingdingshan, Henan 467000, P.R. China
| | - Yue-Mei Li
- Department of Medicine, Pingdingshan University, Pingdingshan, Henan 467000, P.R. China
| |
Collapse
|
9
|
Xia J, Luo Q, Huang S, Jiang F, Wang L, Wang G, Xie J, Liu J, Xu Y. Alisol B 23-acetate-induced HepG2 hepatoma cell death through mTOR signaling-initiated G 1 cell cycle arrest and apoptosis: A quantitative proteomic study. Chin J Cancer Res 2019; 31:375-388. [PMID: 31156308 PMCID: PMC6513739 DOI: 10.21147/j.issn.1000-9604.2019.02.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective The present study aimed to investigate the molecular events in alisol B 23-acetate (ABA) cytotoxic activity against a liver cancer cell line. Methods First, we employed a quantitative proteomics approach based on stable isotope labeling by amino acids in cell culture (SILAC) to identify the different proteins expressed in HepG2 liver cancer cells upon exposure to ABA. Next, bioinformatics analyses through DAVID and STRING on-line tools were used to predict the pathways involved. Finally, we applied functional validation including cell cycle analysis and Western blotting for apoptosis and mTOR pathway-related proteins to confirm the bioinformatics predictions. Results We identified 330 different proteins with the SILAC-based quantitative proteomics approach. The bioinformatics analysis and the functional validation revealed that the mTOR pathway, ribosome biogenesis, cell cycle, and apoptosis pathways were differentially regulated by ABA. G1 cell cycle arrest, apoptosis and mTOR inhibition were confirmed. Conclusions ABA, a potential mTOR inhibitor, induces the disruption of ribosomal biogenesis. It also affects the mTOR-MRP axis to cause G1 cell cycle arrest and finally leads to cancer cell apoptosis.
Collapse
Affiliation(s)
- Ji Xia
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361101, China
| | - Qiang Luo
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361101, China
| | - Shengbin Huang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361101, China
| | - Fuquan Jiang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361101, China
| | - Lin Wang
- Department of Oncology, Zhongshan Hospital of Xiamen University, Xiamen 361004, China.,Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen 361101, China
| | - Guanghui Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361101, China
| | - Jingjing Xie
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361101, China
| | - Jie Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361101, China
| | - Yang Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361101, China
| |
Collapse
|
10
|
Diuretic Activity of Compatible Triterpene Components of Alismatis rhizoma. Molecules 2017; 22:molecules22091459. [PMID: 28878160 PMCID: PMC6151603 DOI: 10.3390/molecules22091459] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
Alismatis rhizoma (AR), the dried rhizoma of Alisma orientale Juzepzuk (Alismataceae), is a traditional Chinese medicine. AR is an important part of many prescriptions and is commonly used as a diuretic agent in Asia. This study aimed to evaluate the diuretic effects of total triterpene extract (TTE) and triterpene component compatibility (TCC, the mixture of alisol B 23-acetate, alisol B, alisol A 24-acetate, alisol A, and alisol C 23-acetate) of AR in saline-loaded rats. The optimal diuretic TCC of AR was optimized using a uniform design. Different doses (5, 20, and 40 mg/kg) of TTE and TCC groups (N1–N8) were orally administered to rats. Urinary excretion rate, pH, and electrolyte excretion were measured in the urine of saline-loaded rats. Results showed that TTE doses increased urine volume and electrolyte excretion compared with the control group. All uniformly designed groups of TCC also increased urine excretion. In addition, optimal diuretic TCC was calculated (alisol B 23-acetate: alisol B: alisol A 24-acetate: alisol A: alisol C 23-acetate 7.2:0.6:2.8:3.0:6.4) and further validated by saline-loaded rats. This study demonstrated that TTE presented a notable diuretic effect by increasing Na+, K+, and Cl− displacements. The most suitable TTC compatible proportion of alisol B 23-acetate: alisol B: alisol A 24-acetate: alisol A: alisol C 23-acetate for diuretic activity was validated, and triterpenes were the material basis for the diuretic activity of AR.
Collapse
|