1
|
Soghrati S, Varshosaz J, Rostami M, Mirian M, Sharifianjazi F, Ta-vamaishvili K. Comparing the transfection efficiency of cationic monomer ratios in vinylimidazole and aminoethyl methacrylate copolymers. Int J Pharm X 2025; 9:100327. [PMID: 40124566 PMCID: PMC11930205 DOI: 10.1016/j.ijpx.2025.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/04/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Employing polycations as non-viral gene delivery vectors has been extensively studied owing to their safety, efficiency and possibility of modifying them in an intended way compared with viral vectors. However, the main challenge is finding a biocompatible and transfection-efficient polymer. In this study, 2-aminoethyl methacrylate (A) and 1-vinyl imidazole (V) were copolymerized at three different molar ratios by a free radical polymerization method and novel biocompatible polycations with narrow molecular weight distribution were obtained. The resulting copolymers were used for condensation of plasmid DNA (pDNA) at different N/P ratios followed by physicochemical characterizations of resulting polyplexes. At N/P ratio of 2, the nanoplexes were smaller than 120 nm. The optimum formulations were stable in presence of polyanions and capable of protecting the condensed pDNA against nucleases. The polyplexes having V to A molar ratio of 1:1 were the most efficient carrier in transfecting HeLa cells and were introduced as a promising non-viral vector.
Collapse
Affiliation(s)
- Sahel Soghrati
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboubeh Rostami
- Novel Drug Delivery Systems Research Centre and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi, Georgia
| | - Ketevan Ta-vamaishvili
- Georgian American University, School of Medicine, 10 Merab Aleksidze Str, Tbilisi 0160, Georgia
| |
Collapse
|
2
|
Silva Couto P, Stibbs DJ, Rotondi MC, Khalife R, Wolf D, Takeuchi Y, Rafiq QA. Biological differences between adult and perinatal human mesenchymal stromal cells and their impact on the manufacturing processes. Cytotherapy 2024; 26:1429-1441. [PMID: 38970611 DOI: 10.1016/j.jcyt.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 07/08/2024]
Abstract
The biological properties of human mesenchymal stromal cells (hMSCs) have been explored in over a thousand clinical trials in the last decade. Although hMSCs can be isolated from multiple sources, the degree of biological similarity between cell populations from these sources remains to be determined. A comparative study was performed investigating the growth kinetics and functionality of hMSCs isolated from adipose tissue (AT), bone marrow (BM) and umbilical cord tissue (UCT) expanded in monolayer over five passages. Adult hMSCs (AT, BM) had a slower proliferation ability than the UCT-hMSCs, with no apparent differences in their glucose consumption profile. BM-hMSCs produced higher concentrations of endogenous vascular endothelial growth factor (VEGF) compared to AT- and UCT-hMSCs. This study also revealed that UCT-hMSCs were more efficiently transduced by a lentiviral vector carrying a VEGF gene than their adult counterparts. Following cellular immunophenotypic characterization, no differences across the sources were found in the expression levels of the typical markers used to identify hMSCs. This work established a systematic approach for cell source selection depending on the hMSC's intended clinical application.
Collapse
Affiliation(s)
- Pedro Silva Couto
- Department of Biochemical Engineering, University College London, London, UK
| | - Dale J Stibbs
- Department of Biochemical Engineering, University College London, London, UK
| | - Marco C Rotondi
- Department of Biochemical Engineering, University College London, London, UK
| | - Rana Khalife
- Department of Biochemical Engineering, University College London, London, UK
| | | | - Yasuhiro Takeuchi
- Division of Infection and Immunity, University College London, London, UK; Biotherapeutics and Advanced Therapies, Scientific Research and Innovation, Medicines and Healthcare products Regulatory Agency, Potters Bar, UK
| | - Qasim A Rafiq
- Department of Biochemical Engineering, University College London, London, UK.
| |
Collapse
|
3
|
Kachanov A, Kostyusheva A, Brezgin S, Karandashov I, Ponomareva N, Tikhonov A, Lukashev A, Pokrovsky V, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. The menace of severe adverse events and deaths associated with viral gene therapy and its potential solution. Med Res Rev 2024; 44:2112-2193. [PMID: 38549260 DOI: 10.1002/med.22036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, in vivo gene replacement therapy has significantly advanced, resulting in market approval of numerous therapeutics predominantly relying on adeno-associated viral vectors (AAV). While viral vectors have undeniably addressed several critical healthcare challenges, their clinical application has unveiled a range of limitations and safety concerns. This review highlights the emerging challenges in the field of gene therapy. At first, we discuss both the role of biological barriers in viral gene therapy with a focus on AAVs, and review current landscape of in vivo human gene therapy. We delineate advantages and disadvantages of AAVs as gene delivery vehicles, mostly from the safety perspective (hepatotoxicity, cardiotoxicity, neurotoxicity, inflammatory responses etc.), and outline the mechanisms of adverse events in response to AAV. Contribution of every aspect of AAV vectors (genomic structure, capsid proteins) and host responses to injected AAV is considered and substantiated by basic, translational and clinical studies. The updated evaluation of recent AAV clinical trials and current medical experience clearly shows the risks of AAVs that sometimes overshadow the hopes for curing a hereditary disease. At last, a set of established and new molecular and nanotechnology tools and approaches are provided as potential solutions for mitigating or eliminating side effects. The increasing number of severe adverse reactions and, sadly deaths, demands decisive actions to resolve the issue of immune responses and extremely high doses of viral vectors used for gene therapy. In response to these challenges, various strategies are under development, including approaches aimed at augmenting characteristics of viral vectors and others focused on creating secure and efficacious non-viral vectors. This comprehensive review offers an overarching perspective on the present state of gene therapy utilizing both viral and non-viral vectors.
Collapse
Affiliation(s)
- Artyom Kachanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Ivan Karandashov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Andrey Tikhonov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Vadim Pokrovsky
- Laboratory of Biochemical Fundamentals of Pharmacology and Cancer Models, Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People's Friendship University, Russia (RUDN University), Moscow, Russia
| | - Andrey A Zamyatnin
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Research, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Pan Y, Luo Y, Hong J, He H, Dai L, Zhu H, Wu J. Advances for the treatment of lower extremity arterial disease associated with diabetes mellitus. Front Mol Biosci 2022; 9:929718. [PMID: 36060247 PMCID: PMC9429832 DOI: 10.3389/fmolb.2022.929718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Lower extremity arterial disease (LEAD) is a major vascular complication of diabetes. Vascular endothelial cells dysfunction can exacerbate local ischemia, leading to a significant increase in amputation, disability, and even mortality in patients with diabetes combined with LEAD. Therefore, it is of great clinical importance to explore proper and effective treatments. Conventional treatments of diabetic LEAD include lifestyle management, medication, open surgery, endovascular treatment, and amputation. As interdisciplinary research emerges, regenerative medicine strategies have provided new insights to treat chronic limb threatening ischemia (CLTI). Therapeutic angiogenesis strategies, such as delivering growth factors, stem cells, drugs to ischemic tissues, have also been proposed to treat LEAD by fundamentally stimulating multidimensional vascular regeneration. Recent years have seen the rapid growth of tissue engineering technology; tissue-engineered biomaterials have been used to study the treatment of LEAD, such as encapsulation of growth factors and drugs in hydrogel to facilitate the restoration of blood perfusion in ischemic tissues of animals. The primary purpose of this review is to introduce treatments and novel biomaterials development in LEAD. Firstly, the pathogenesis of LEAD is briefly described. Secondly, conventional therapies and therapeutic angiogenesis strategies of LEAD are discussed. Finally, recent research advances and future perspectives on biomaterials in LEAD are proposed.
Collapse
Affiliation(s)
- Yang Pan
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuting Luo
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Hong
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
- *Correspondence: Huacheng He, ; Hong Zhu,
| | - Lu Dai
- The Fourth Outpatient Department, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Zhu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Huacheng He, ; Hong Zhu,
| | - Jiang Wu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Lin G, Huang J, Zhang M, Chen S, Zhang M. Chitosan-Crosslinked Low Molecular Weight PEI-Conjugated Iron Oxide Nanoparticle for Safe and Effective DNA Delivery to Breast Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:584. [PMID: 35214917 PMCID: PMC8876741 DOI: 10.3390/nano12040584] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023]
Abstract
Breast cancer has attracted tremendous research interest in treatment development as one of the major threats to public health. The use of non-viral carriers for therapeutic DNA delivery has shown promise in treating various cancer types, including breast cancer, due to their high DNA loading capacity, high cell transfection efficiency, and design versatility. However, cytotoxicity and large sizes of non-viral DNA carriers often raise safety concerns and hinder their applications in the clinic. Here we report the development of a novel nanoparticle formulation (termed NP-Chi-xPEI) that can safely and effectively deliver DNA into breast cancer cells for successful transfection. The nanoparticle is composed of an iron oxide core coated with low molecular weight (800 Da) polyethyleneimine crosslinked with chitosan via biodegradable disulfide bonds. The NP-Chi-xPEI can condense DNA into a small nanoparticle with the overall size of less than 100 nm and offer full DNA protection. Its biodegradable coating of small-molecular weight xPEI and mildly positive surface charge confer extra biocompatibility. NP-Chi-xPEI-mediated DNA delivery was shown to achieve high transfection efficiency across multiple breast cancer cell lines with significantly lower cytotoxicity as compared to the commercial transfection agent Lipofectamine 3000. With demonstrated favorable physicochemical properties and functionality, NP-Chi-xPEI may serve as a reliable vehicle to deliver DNA to breast cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA; (G.L.); (J.H.); (M.Z.); (S.C.)
| |
Collapse
|
6
|
Tarantul VZ, Gavrilenko AV. Gene therapy for critical limb ischemia: Per aspera ad astra. Curr Gene Ther 2021; 22:214-227. [PMID: 34254916 DOI: 10.2174/1566523221666210712185742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022]
Abstract
Peripheral artery diseases remain a serious public health problem. Although there are many traditional methods for their treatment using conservative therapeutic techniques and surgery, gene therapy is an alternative and potentially more effective treatment option especially for "no option" patients. This review treats the results of many years of research and application of gene therapy as an example of treatment of patients with critical limb ischemia. Data on successful and unsuccessful attempts to use this technology for treating this disease are presented. Trends in changing the paradigm of approaches to therapeutic angiogenesis are noted: from viral vectors to non-viral vectors, from gene transfer to the whole organism to targeted transfer to cells and tissues, from single gene use to combination of genes; from DNA therapy to RNA therapy, from in vivo therapy to ex vivo therapy.
Collapse
Affiliation(s)
- Vyacheslav Z Tarantul
- National Research Center "Kurchatov Institute", Institute of Molecular Genetics, Moscow 123182, Russian Federation
| | - Alexander V Gavrilenko
- A.V.¬ Petrovsky Russian Scientific Center for Surgery, Moscow 119991, Russian Federation
| |
Collapse
|
7
|
Meng X, Xing Y, Li J, Deng C, Li Y, Ren X, Zhang D. Rebuilding the Vascular Network: In vivo and in vitro Approaches. Front Cell Dev Biol 2021; 9:639299. [PMID: 33968926 PMCID: PMC8097043 DOI: 10.3389/fcell.2021.639299] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
As the material transportation system of the human body, the vascular network carries the transportation of materials and nutrients. Currently, the construction of functional microvascular networks is an urgent requirement for the development of regenerative medicine and in vitro drug screening systems. How to construct organs with functional blood vessels is the focus and challenge of tissue engineering research. Here in this review article, we first introduced the basic characteristics of blood vessels in the body and the mechanism of angiogenesis in vivo, summarized the current methods of constructing tissue blood vessels in vitro and in vivo, and focused on comparing the functions, applications and advantages of constructing different types of vascular chips to generate blood vessels. Finally, the challenges and opportunities faced by the development of this field were discussed.
Collapse
Affiliation(s)
- Xiangfu Meng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yunhui Xing
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Jiawen Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Cechuan Deng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
8
|
Marsico G, Martin‐Saldaña S, Pandit A. Therapeutic Biomaterial Approaches to Alleviate Chronic Limb Threatening Ischemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003119. [PMID: 33854887 PMCID: PMC8025020 DOI: 10.1002/advs.202003119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/24/2020] [Indexed: 05/14/2023]
Abstract
Chronic limb threatening ischemia (CLTI) is a severe condition defined by the blockage of arteries in the lower extremities that leads to the degeneration of blood vessels and is characterized by the formation of non-healing ulcers and necrosis. The gold standard therapies such as bypass and endovascular surgery aim at the removal of the blockage. These therapies are not suitable for the so-called "no option patients" which present multiple artery occlusions with a likelihood of significant limb amputation. Therefore, CLTI represents a significant clinical challenge, and the efforts of developing new treatments have been focused on stimulating angiogenesis in the ischemic muscle. The delivery of pro-angiogenic nucleic acid, protein, and stem cell-based interventions have limited efficacy due to their short survival. Engineered biomaterials have emerged as a promising method to improve the effectiveness of these latter strategies. Several synthetic and natural biomaterials are tested in different formulations aiming to incorporate nucleic acid, proteins, stem cells, macrophages, or endothelial cells in supportive matrices. In this review, an overview of the biomaterials used alone and in combination with growth factors, nucleic acid, and cells in preclinical models is provided and their potential to induce revascularization and regeneration for CLTI applications is discussed.
Collapse
Affiliation(s)
- Grazia Marsico
- CÚRAM SFI Research Centre for Medical DevicesNational University of IrelandGalwayIreland
| | - Sergio Martin‐Saldaña
- CÚRAM SFI Research Centre for Medical DevicesNational University of IrelandGalwayIreland
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical DevicesNational University of IrelandGalwayIreland
| |
Collapse
|
9
|
Fang Z, Ge X, Chen X, Xu Y, Yuan WE, Ouyang Y. Enhancement of sciatic nerve regeneration with dual delivery of vascular endothelial growth factor and nerve growth factor genes. J Nanobiotechnology 2020; 18:46. [PMID: 32169062 PMCID: PMC7071717 DOI: 10.1186/s12951-020-00606-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/09/2020] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Peripheral nerve injury is one common clinical disease worldwide, in which sciatic nerve is anatomically the most challenging to regenerate given its length and large cross-sectional area. For the present, autologous nerve grafting remains to be the most ideal strategy when treating with sciatic nerve injury. However, this method sacrifices healthy nerves and requires highly intensive surgery, still calling for other advanced alternatives for nerve grafting. RESULTS In this study, we utilized previously well-established gene delivery system to dually deliver plasmid DNA (pDNA) encoding vascular endothelial growth factor (VEGF) and nerve growth factor (NGF), exploring therapeutics for sciatic nerve injury. Low-molecular-weight branched polyethylenimine (bPEI) was constructed as the backbone structure of gene vectors, and it was further crosslinked to synthesize degradable polycations via the conjugation of dialdehydes. Potential synergistic effect between VEGF and NGF proteins were observed on rat sciatic nerve crush injury model in this study. CONCLUSIONS We concluded that dual delivery of plasmid VEGF and NGF as gene therapy could enhance sciatic nerve regeneration.
Collapse
Affiliation(s)
- Zhiwei Fang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.,Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China
| | - Xuemei Ge
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuan Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Xu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China.
| |
Collapse
|
10
|
Li X, Guo X, Cheng Y, Zhao X, Fang Z, Luo Y, Xia S, Feng Y, Chen J, Yuan WE. pH-Responsive Cross-Linked Low Molecular Weight Polyethylenimine as an Efficient Gene Vector for Delivery of Plasmid DNA Encoding Anti-VEGF-shRNA for Tumor Treatment. Front Oncol 2018; 8:354. [PMID: 30319959 PMCID: PMC6167493 DOI: 10.3389/fonc.2018.00354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/10/2018] [Indexed: 01/23/2023] Open
Abstract
RNA interference (RNAi) is a biological process through which gene expression can be inhibited by RNA molecules with high selectivity and specificity, providing a promising tool for tumor treatment. Two types of molecules are often applied to inactivate target gene expression: synthetic double stranded small interfering RNA (siRNA) and plasmid DNA encoding short hairpin RNA (shRNA). Vectors with high transfection efficiency and low toxicity are essential for the delivery of siRNA and shRNA. In this study, TDAPEI, the synthetic derivative of low-molecular-weight polyethylenimine (PEI), was cross-linked with imine bonds by the conjugation of branched PEI (1.8 kDa) and 2,5-thiophenedicarboxaldehyde (TDA). This biodegradable cationic polymer was utilized as the vector for the delivery of plasmid DNA expressing anti-VEGF-shRNA. Compared to PEI (25 kDa), TDAPEI had a better performance since experimental results suggest its higher transfection efficiency as well as lower toxicity both in cell and animal studies. TDAPEI did not stimulate innate immune response, which is a significant factor that should be considered in vector design for gene delivery. All the results suggested that TDAPEI delivering anti-VEGF-shRNA may provide a promising method for tumor treatment.
Collapse
Affiliation(s)
- Xiaoming Li
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoshuang Guo
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Cheng
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaotian Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Fang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yanli Luo
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shujun Xia
- Department of Ultrasound, Rui Jin Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Feng
- Department of Respiration, Institute of Respiratory Diseases, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wei-En Yuan
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Ruan H, Yu Y, Guo X, Jiang Q, Luo Y. The possibility of healing alveolar bone defects with simvastatin thermosensitive gel: in vitro/in vivo evaluation. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1997-2003. [PMID: 30013319 PMCID: PMC6037404 DOI: 10.2147/dddt.s163986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background In this study, simvastatin (SVT) in situ gels were successfully produced by our group. Methods The preparations were characterized in the following aspects: in vitro gelation, drug release, stability and pharmacodynamics. Results In this study, drug content of prepared gels was found to be in the range between 89 and 92%. The pH value was in the range between 6.5 and 7.0. The gelation temperature of the prepared thermogelling solutions was 37°C. In vitro release showed that the release of SVT from in situ gels was slow with burst effects at an early stage. Researches indicated that intraorally slow release SVT in situ gels could effectively promote bone regeneration repair of alveolar bone defect. Conclusion This drug delivery system could prove to be a novel form able to prolong the residence time and to control the release of drug when administered into the oral cavity.
Collapse
Affiliation(s)
- Hong Ruan
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China,
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China,
| | - Xuehua Guo
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China,
| | - Qian Jiang
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China,
| | - Ying Luo
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China,
| |
Collapse
|