1
|
Meyer D, Kosacka J, von Bergen M, Christ B, Marz M. Data report on gene expression after hepatic portal vein ligation (PVL) in rats. Front Genet 2024; 15:1421955. [PMID: 39233735 PMCID: PMC11371715 DOI: 10.3389/fgene.2024.1421955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 09/06/2024] Open
Affiliation(s)
- Daria Meyer
- Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
- Oncgnostics GmbH, Jena, Germany
| | - Joanna Kosacka
- Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic, and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Martin von Bergen
- Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Bruno Christ
- Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic, and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Manja Marz
- Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
- FLI Leibniz Institute for Age Research, Jena, Germany
- European Virus Bioinformatics Center, Jena, Germany
- Michael Stifel Center Jena, Jena, Germany
- Aging Research Center (ARC), Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Max Planck Institute for the Science of Human History, Jena, Germany
| |
Collapse
|
2
|
Beňačka R, Szabóová D, Guľašová Z, Hertelyová Z, Radoňak J. Non-Coding RNAs in Human Cancer and Other Diseases: Overview of the Diagnostic Potential. Int J Mol Sci 2023; 24:16213. [PMID: 38003403 PMCID: PMC10671391 DOI: 10.3390/ijms242216213] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are abundant single-stranded RNA molecules in human cells, involved in various cellular processes ranging from DNA replication and mRNA translation regulation to genome stability defense. MicroRNAs are multifunctional ncRNA molecules of 18-24 nt in length, involved in gene silencing through base-pair complementary binding to target mRNA transcripts. piwi-interacting RNAs are an animal-specific class of small ncRNAs sized 26-31 nt, responsible for the defense of genome stability via the epigenetic and post-transcriptional silencing of transposable elements. Long non-coding RNAs are ncRNA molecules defined as transcripts of more than 200 nucleotides, their function depending on localization, and varying from the regulation of cell differentiation and development to the regulation of telomere-specific heterochromatin modifications. The current review provides recent data on the several forms of small and long non-coding RNA's potential to act as diagnostic, prognostic or therapeutic target for various human diseases.
Collapse
Affiliation(s)
- Roman Beňačka
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (R.B.); (D.S.)
| | - Daniela Szabóová
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (R.B.); (D.S.)
| | - Zuzana Guľašová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| | - Zdenka Hertelyová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| | - Jozef Radoňak
- 1st Department of Surgery, Faculty of Medicine, Louis Pasteur University Hospital (UNLP) and Pavol Jozef Šafarik University, 04011 Košice, Slovakia
| |
Collapse
|
3
|
Dandare A, Khan MJ, Naeem A, Liaquat A. Clinical relevance of circulating non-coding RNAs in metabolic diseases: Emphasis on obesity, diabetes, cardiovascular diseases and metabolic syndrome. Genes Dis 2023; 10:2393-2413. [PMID: 37554181 PMCID: PMC10404886 DOI: 10.1016/j.gendis.2022.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Non-coding RNAs (ncRNAs) participate in the regulation of several cellular processes including transcription, RNA processing and genome rearrangement. The aberrant expression of ncRNAs is associated with several pathological conditions. In this review, we focused on recent information to elucidate the role of various regulatory ncRNAs i.e., micro RNAs (miRNAs), circular RNAs (circRNAs) and long-chain non-coding RNAs (lncRNAs), in metabolic diseases, e.g., obesity, diabetes mellitus (DM), cardiovascular diseases (CVD) and metabolic syndrome (MetS). The mechanisms by which ncRNAs participated in disease pathophysiology were also highlighted. miRNAs regulate the expression of genes at transcriptional and translational levels. circRNAs modulate the regulation of gene expression via miRNA sponging activity, interacting with RNA binding protein and polymerase II transcription regulation. lncRNAs regulate the expression of genes by acting as a protein decoy, miRNA sponging, miRNA host gene, binding to miRNA response elements (MRE) and the recruitment of transcriptional element or chromatin modifiers. We examined the role of ncRNAs in the disease pathogenesis and their potential role as molecular markers for diagnosis, prognosis and therapeutic targets. We showed the involvement of ncRNAs in the onset of obesity and its progression to MetS and CVD. miRNA-192, miRNA-122, and miRNA-221 were dysregulated in all these metabolic diseases. Other ncRNAs, implicated in at least three diseases include miRNA-15a, miRNA-26, miRNA-27a, miRNA-320, and miRNA-375. Dysregulation of ncRNAs increased the risk of development of DM and MetS and its progression to CVD in obese individuals. Hence, these molecules are potential targets to arrest or delay the progression of metabolic diseases.
Collapse
Affiliation(s)
- Abdullahi Dandare
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
- Department of Biochemistry, Usmanu Danfodiyo University, Sokoto 840104, Nigeria
| | - Muhammad Jawad Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Aisha Naeem
- Ministry of Public Health, POB42, Doha, Qatar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Afrose Liaquat
- Shifa College of Medicine, Shifa Tameer-E-Millat University, Islamabad 45550, Pakistan
| |
Collapse
|
4
|
Zhu Y, Xu G, Han C, Xing G. The emerging landscape of long non-coding RNAs in hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:920-937. [PMID: 34646411 PMCID: PMC8493264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers. HCC shows high prevalence and lethality caused by a variety of etiologic factors. However, the underlying mechanisms and the diagnostic markers identifying patients at risk in advance has not been entirely elucidated. Long non-coding RNAs (lncRNAs) are a subgroup of non-coding RNAs greater than 200 nucleotides in length with no protein-coding capability. With the progress in sequencing technologies and bioinformatic tools, the landscape of lncRNAs is being revealed. Numerous discoveries point out that lncRNAs participate in HCC carcinogenesis and metastasis through altering cell proliferation and invasion ability, apoptosis, and chemo- or radio-sensitivity. Moreover, lncRNA is easy to detect compared to the traditional diagnostic methods. This review summarizes the mechanisms of major lncRNAs in HCC discovered in recent years and lncRNAs as early diagnostic markers for HCC.
Collapse
Affiliation(s)
- Yungang Zhu
- Department of Radiology, Tianjin Teda HospitalTianjin 300457, China
| | - Guoping Xu
- Department of Medical Imaging, The Second Hospital of Tianjin Medical UniversityTianjin 300211, China
| | - Changrui Han
- Department of Radiology, Tianjin Teda HospitalTianjin 300457, China
| | - Gang Xing
- Department of Radiology, Tianjin Teda HospitalTianjin 300457, China
| |
Collapse
|
5
|
Formichi C, Nigi L, Grieco GE, Maccora C, Fignani D, Brusco N, Licata G, Sebastiani G, Dotta F. Non-Coding RNAs: Novel Players in Insulin Resistance and Related Diseases. Int J Mol Sci 2021; 22:7716. [PMID: 34299336 PMCID: PMC8306942 DOI: 10.3390/ijms22147716] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
The rising prevalence of metabolic diseases related to insulin resistance (IR) have stressed the urgent need of accurate and applicable tools for early diagnosis and treatment. In the last decade, non-coding RNAs (ncRNAs) have gained growing interest because of their potential role in IR modulation. NcRNAs are variable-length transcripts which are not translated into proteins but are involved in gene expression regulation. Thanks to their stability and easy detection in biological fluids, ncRNAs have been investigated as promising diagnostic and therapeutic markers in metabolic diseases, such as type 2 diabetes mellitus (T2D), obesity and non-alcoholic fatty liver disease (NAFLD). Here we review the emerging role of ncRNAs in the development of IR and related diseases such as obesity, T2D and NAFLD, and summarize current evidence concerning their potential clinical application.
Collapse
Affiliation(s)
- Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Carla Maccora
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (C.F.); (L.N.); (G.E.G.); (D.F.); (N.B.); (G.L.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), 53100 Siena, Italy
| |
Collapse
|
6
|
Karkhane M, Lashgarian HE, Hormozi M, Fallahi S, Cheraghipour K, Marzban A. Oncogenesis and Tumor Inhibition by MicroRNAs and its Potential Therapeutic Applications: A Systematic Review. Microrna 2021; 9:198-215. [PMID: 31686643 DOI: 10.2174/2211536608666191104103834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/01/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs appear as small molecule modifiers, which improve many new findings and mechanical illustrations for critically important biological phenomena and pathologic events. The best-characterized non-coding RNA family consists of about 2600 human microRNAs. Rich evidence has revealed their crucial importance in maintaining normal development, differentiation, growth control, aging, modulation of cell survival or apoptosis, as well as migration and metastasis as microRNAs dysregulation leads to cancer incidence and progression. By far, microRNAs have recently emerged as attractive targets for therapeutic intervention. The rationale for developing microRNA therapeutics is based on the premise that aberrantly expressed microRNAs play a significant role in the emergence of a variety of human diseases ranging from cardiovascular defects to cancer, and that repairing these microRNA deficiencies by either antagonizing or restoring microRNA function may yield a therapeutic benefit. Although microRNA antagonists are conceptually similar to other inhibitory therapies, improving the performance of microRNAs by microRNA replacement or inhibition that is a less well- described attitude. In this assay, we have condensed the last global knowledge and concepts regarding the involvement of microRNAs in cancer emergence, which has been achieved from the previous studies, consisting of the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response and the disruption of profile expression in human cancer. Here, we have reviewed the special characteristics of microRNA replacement and inhibition therapies and discussed explorations linked with the delivery of microRNA mimics in turmeric cells. Besides, the achievement of biomarkers based on microRNAs in clinics is considered as novel non-invasive biomarkers in diagnostic and prognostic assessments.
Collapse
Affiliation(s)
- Maryam Karkhane
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Esmaeil Lashgarian
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Hormozi
- Department of Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Shirzad Fallahi
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kourosh Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
7
|
Chen C, Zong Y, Tang J, Ke R, Lv L, Wu M, Lu J. miR-369-3p serves as prognostic factor and regulates cancer progression of hepatocellular carcinoma. Per Med 2021; 18:375-388. [PMID: 33792408 DOI: 10.2217/pme-2020-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: The aim of this study was to investigate the role of miR-369-3p in hepatocellular carcinoma (HCC). Materials & methods: The expression levels of miR-369-3p were detected using the quantitative real-time reverse transcription-PCR analysis. The cell counting kit-8 and transwell assays were used to explore the effects of miR-369-3p on cell proliferation, migration and invasion of HCC cells. Results: The miR-369-3p expression was downregulated in HCC tissues and cell lines, in comparison to the normal controls, respectively. In vitro, overexpression of miR-369-3p in Hep 3B and Huh7 cells inhibited cell proliferation, migration and invasion. SOX4 was a direct target of miR-369-3p. Conclusion: Our results suggested that miR-369-3p may be a tumor suppressor in HCC by targeting SOX4.
Collapse
Affiliation(s)
- Can Chen
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, 350108, PR China.,Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| | - Yi Zong
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, 350108, PR China.,The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| | - Jiaojiao Tang
- Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| | - Ruisheng Ke
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, PR China
| | - Lizhi Lv
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, 350025, PR China
| | - Mengchao Wu
- Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| | - Junhua Lu
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| |
Collapse
|
8
|
Sunagawa Y, Yamada S, Sonohara F, Kurimoto K, Tanaka N, Suzuki Y, Inokawa Y, Takami H, Hayashi M, Kanda M, Tanaka C, Nakayama G, Koike M, Kodera Y. Genome-wide identification and characterization of circular RNA in resected hepatocellular carcinoma and background liver tissue. Sci Rep 2021; 11:6016. [PMID: 33727578 PMCID: PMC7971023 DOI: 10.1038/s41598-021-85237-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA known to affect cancer-related micro RNAs and various transcription factors. circRNA has promise as a cancer-related biomarker because its circular structure affords high stability. We found using high-throughput sequencing that seven candidate circRNAs (hsa_circ_0041150, hsa_circ_0025624, hsa_circ_0001020, hsa_circ_0028129, hsa_circ_0008558, hsa_circ_0036683, hsa_circ_0058087) were downregulated in HCC. The expression of these circRNAs was examined by quantitative PCR in 233 sets of HCC and matched background normal liver tissues, and correlations between candidate circRNA expression and prognosis were evaluated. The results of quantitative PCR showed that expression of hsa_circ_0041150, hsa_circ_0001020 and hsa_circ_0008558 was significantly lower in HCC than in background normal liver tissues. Kaplan–Meier analysis revealed that low expression of hsa_circ_0001020, hsa_circ_0036683, and hsa_circ_0058087 was associated with poor recurrence-free (RFS) and overall survival (OS) in HCC. Additionally, multivariate analysis revealed that low hsa_circ_0036683 expression was a significant prognostic factor, independent from other clinicopathological features, for inferior RFS and OS. There was no significant association between the expression of these circRNAs and hepatitis B/C status or cirrhosis. This study therefore identified circRNAs as potential prognostic markers for patients who undergo curative surgery for HCC and highlighted hsa_circ_0036683 as the most useful biomarker.
Collapse
Affiliation(s)
- Yuki Sunagawa
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Fuminori Sonohara
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Keisuke Kurimoto
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Nobutake Tanaka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yunosuke Suzuki
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
9
|
RP11-81H3.2 Acts as an Oncogene via microRNA-490-3p Inhibition and Consequential Tankyrase 2 Up-Regulation in Hepatocellular Carcinoma. Dig Dis Sci 2020; 65:2949-2958. [PMID: 31858324 DOI: 10.1007/s10620-019-06007-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a serious threat to human lives and is usually diagnosed at the late stages. Recently, there has been a rapid advancement in the treatment options for HCC, but novel therapeutic targets are still needed, especially for precision medicine. AIMS We aimed to investigate the involvement of non-coding RNA RP11-81H3.2 in HCC. METHODS The expression of RP11-81H3.2 was examined in the blood samples of HCC patients, and in the human HCC cell lines, including HepG2, Smmc-7721, and Huh7. Cell proliferation was determined using the CCK-8 and EdU assay, and cell invasion and migration were determined using the transwell/wound healing assay. The effects of RP11-81H3.2 knockdown on in vivo tumor growth were evaluated utilizing the nude mice HepG2 tumor xenograft model. RESULTS Here, we have identified a long non-coding RNA, RP11-81H3.2, which is enriched in HCC and can promote its proliferation, migration, and invasion both in vitro and in vivo. In addition, our results showed that RP11-81H3.2 binds to and regulate miR-490-3p expression in the HCC cells. Moreover, we found that RP11-81H3.2 regulates the expression of TNKS2 via miR-490-3p. Further, we found that RP11-81H3.2 and miR-490-3p form a regulatory loop; the release of RP11-81H3.2 leads to the suppression of miR-490-3p expression, thus, further enhancing the expression of RP11-81H3.2. CONCLUSIONS Our data have provided a novel target for the diagnosis and treatment of HCC, and sheds light on the lncRNA-miRNA regulatory nexus that can control the HCC related pathogenesis.
Collapse
|
10
|
lncRNAs-mRNAs Co-Expression Network Underlying Childhood B-Cell Acute Lymphoblastic Leukaemia: A Pilot Study. Cancers (Basel) 2020; 12:cancers12092489. [PMID: 32887470 PMCID: PMC7564554 DOI: 10.3390/cancers12092489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Acute lymphoblastic leukemia (ALL) is one of the most common childhood cancers. The ALL onset involves abnormal proliferation and arrest of differentiation of B or T cell progenitors. Recently, long non–coding RNAs (lncRNAs) gained great interest in the B–ALL leukemogenesis, however, so far few “omic” studies investigate lncRNAs and protein–coding gene networks. In our retrospective study, we conceived an integrated bioinformatic approach, by using NGS platform, to discover lncRNAs strongly correlated with aberrantly expressed protein–coding genes. We provided dysregulated lncRNA–mRNA pairs potentially underlying B–ALL pathogenesis. Diagnosis incidence peak of ALL appears approximatively between 1 and 19 years old. lncRNAs may be of clinical utility as non–invasive biomarker for B–ALL onset or therapy response in support of precision medicine. The identification of lncRNA as key regulators in B–ALL could lead to the identification of the altered pathways able to sustain the leukemic growth. Abstract Long non–coding RNAs (lncRNAs) are emerging as key gene regulators in the pathogenesis and development of various cancers including B lymphoblastic leukaemia (B–ALL). In this pilot study, we used RNA–Seq transcriptomic data for identifying novel lncRNA–mRNA cooperative pairs involved in childhood B–ALL pathogenesis. We conceived a bioinformatic pipeline based on unsupervised PCA feature extraction approach and stringent statistical criteria to extract potential childhood B–ALL lncRNA signatures. We then constructed a co–expression network of the aberrantly expressed lncRNAs (30) and protein–coding genes (754). We cross–validated our in–silico findings on an independent dataset and assessed the expression levels of the most differentially expressed lncRNAs and their co–expressed mRNAs through ex vivo experiments. Using the guilt–by–association approach, we predicted lncRNA functions based on their perfectly co–expressed mRNAs (Spearman’s correlation) that resulted closely disease–associated. We shed light on 24 key lncRNAs and their co–expressed mRNAs which may play an important role in B–ALL pathogenesis. Our results may be of clinical utility for diagnostic and/or prognostic purposes in paediatric B–ALL management.
Collapse
|
11
|
Riaz F, Li D. Non-coding RNA Associated Competitive Endogenous RNA Regulatory Network: Novel Therapeutic Approach in Liver Fibrosis. Curr Gene Ther 2020; 19:305-317. [PMID: 31696817 DOI: 10.2174/1566523219666191107113046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Liver fibrosis or scarring is the most common pathological feature caused by chronic liver injury, and is widely considered one of the primary causes of morbidity and mortality. It is primarily characterised by hepatic stellate cells (HSC) activation and excessive extracellular matrix (ECM) protein deposition. Overwhelming evidence suggests that the dysregulation of several noncoding RNAs (ncRNAs), mainly long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) contributes to the activation of HSC and progression of liver fibrosis. These ncRNAs not only bind to their target genes for the development and regression of liver fibrosis but also act as competing endogenous RNAs (ceRNAs) by sponging with miRNAs to form signaling cascades. Among these signaling cascades, lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA are critical modulators for the initiation, progression, and regression of liver fibrosis. Thus, targeting these interacting ncRNA cascades can serve as a novel and potential therapeutic target for inhibition of HSC activation and prevention and regression of liver fibrosis.
Collapse
Affiliation(s)
- Farooq Riaz
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, China
| |
Collapse
|
12
|
Wang Z, Song L, Ye Y, Li W. Long Noncoding RNA DIO3OS Hinders Cell Malignant Behaviors of Hepatocellular Carcinoma Cells Through the microRNA-328/Hhip Axis. Cancer Manag Res 2020; 12:3903-3914. [PMID: 32547226 PMCID: PMC7259459 DOI: 10.2147/cmar.s245990] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022] Open
Abstract
Background The decline of a long non-coding RNA (lncRNA) DIO3OS was implicated in a plethora of cancers, while the relevance in hepatocellular carcinoma (HCC) has not been mentioned. Accordingly, we set to determine the functional role of DIO3OS and the molecular mechanism in HCC progression. Materials and Methods The differentially expressed lncRNAs, mRNAs, and microRNAs (miRNAs) were obtained through the datasets GSE101728 and GES57555. Afterwards, DIO3OS was enhanced in HCC cells to examine the behavior changes. Subcellular localization of DIO3OS was determined through website prediction and experimental validation. The expression of Hedgehog (Hh) signaling pathway-related genes was detected. The effects of DIO3OS overexpression on tumor growth were evaluated as well. Results DIO3OS was lower in HCC tissues and cells, while upregulation of DIO3OS repressed malignant biological behavior both in vitro and in vivo. DIO3OS, localized in the cytoplasm, inhibited the occurrence of HCC by disrupting the Hh pathway by sponging miR-328 to mediate Hh interacting protein (Hhip). Conclusion All in all, the obtained data suggested that DIO3OS interacted with Hhip-dependent Hh signaling pathway to inhibit HCC progression through binding to miR-328, which may be a potent therapeutic target for HCC.
Collapse
Affiliation(s)
- Zhanpeng Wang
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130000, People's Republic of China
| | - Lina Song
- Department of Laboratory Medicine Center, China-Japan Union Hospital of Jilin University, Changchun 130000, People's Republic of China
| | - Yanshuo Ye
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130000, People's Republic of China
| | - Wei Li
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130000, People's Republic of China
| |
Collapse
|
13
|
Joshi P, Jallo G, Perera RJ. In silico analysis of long non-coding RNAs in medulloblastoma and its subgroups. Neurobiol Dis 2020; 141:104873. [PMID: 32320737 DOI: 10.1016/j.nbd.2020.104873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/03/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023] Open
Abstract
Medulloblastoma is the most common malignant pediatric brain tumor with high fatality rate. Recent large-scale studies utilizing genome-wide technologies have sub-grouped medulloblastomas into four major subgroups: wingless (WNT), sonic hedgehog (SHH), group 3, and group 4. However, there has yet to be a global analysis of long non-coding RNAs, a crucial part of the regulatory transcriptome, in medulloblastoma. Here, we performed bioinformatic analysis of RNA-seq data from 175 medulloblastoma patients. Differential lncRNA expression sub-grouped medulloblastomas into the four main molecular subgroups. Some of these lncRNAs were subgroup-specific, with a random forest-based machine-learning algorithm identifying an 11-lncRNA diagnostic signature. We also validated the diagnostic signature in patient derived xenograft (PDX) models. We further identified a 17-lncRNA prognostic model using LASSO based penalized Cox' PH model (Score HR = 13.6301, 95% CI = 8.857-20.98, logrank p-value ≤ 2e-16). Our analysis represents the first global lncRNA analysis in medulloblastoma. Our results identify putative candidate lncRNAs that could be evaluated for their functional role in medulloblastoma genesis and progression or as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Piyush Joshi
- Cancer and Blood Disorder Institute, Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA
| | - George Jallo
- Institute of Brain Protection Sciences, Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701 USA
| | - Ranjan J Perera
- Cancer and Blood Disorder Institute, Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA; Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Perera BP, Faulk C, Svoboda LK, Goodrich JM, Dolinoy DC. The role of environmental exposures and the epigenome in health and disease. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:176-192. [PMID: 31177562 PMCID: PMC7252203 DOI: 10.1002/em.22311] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 05/02/2023]
Abstract
The genetic material of every organism exists within the context of regulatory networks that govern gene expression, collectively called the epigenome. Epigenetics has taken center stage in the study of diseases such as cancer and diabetes, but its integration into the field of environmental health is still emerging. As the Environmental Mutagenesis and Genomics Society (EMGS) celebrates its 50th Anniversary this year, we have come together to review and summarize the seminal advances in the field of environmental epigenomics. Specifically, we focus on the role epigenetics may play in multigenerational and transgenerational transmission of environmentally induced health effects. We also summarize state of the art techniques for evaluating the epigenome, environmental epigenetic analysis, and the emerging field of epigenome editing. Finally, we evaluate transposon epigenetics as they relate to environmental exposures and explore the role of noncoding RNA as biomarkers of environmental exposures. Although the field has advanced over the past several decades, including being recognized by EMGS with its own Special Interest Group, recently renamed Epigenomics, we are excited about the opportunities for environmental epigenetic science in the next 50 years. Environ. Mol. Mutagen. 61:176-192, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bambarendage P.U. Perera
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Christopher Faulk
- Department of Animal Sciences, University of Minnesota, St. Paul, Minnesota
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
- Correspondence to: Dana C. Dolinoy, Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan.
| |
Collapse
|
15
|
Choi JH, Kim SM, Lee GH, Jin SW, Lee HS, Chung YC, Jeong HG. Platyconic Acid A, Platycodi Radix-Derived Saponin, Suppresses TGF-1-induced Activation of Hepatic Stellate Cells via Blocking SMAD and Activating the PPAR Signaling Pathway. Cells 2019; 8:cells8121544. [PMID: 31795488 PMCID: PMC6952772 DOI: 10.3390/cells8121544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
Platycodi radix is a widely sold health food worldwide, which contains numerous phytochemicals that are beneficial to health. Previously, we reported that saponin from the roots of Platycodi radix-derived saponin inhibited toxicant-induced liver diseases. Nevertheless, the inhibitory effect of platyconic acid A (PA), the active component of Platycodi radix-derived saponin, on the anti-fibrotic activity involving the SMAD pathway remains unclear. We investigated the inhibitory effects of PA on TGF-β1-induced activation of hepatic stellate cells (HSCs). PA inhibited TGF-β1-enhanced cell proliferation, as well as expression of α-SMA and collagen Iα1 in HSC-T6 cells. PA suppressed TGF-β1-induced smad2/3 phosphorylation and smad binding elements 4 (SBE4) luciferase activity. Reversely, PA restored TGF-β1-reduced expression of smad7 and peroxisome proliferator-activated receptor (PPAR)γ. PA also repressed TGF-β1-induced phosphorylation of Akt and MAPKs. In summary, the results suggest that the inhibitory effect of PA on HSCs occurs through the blocking of SMAD-dependent and SMAD-independent pathways, leading to the suppression of α-SMA and collagen Iα1 expression.
Collapse
Affiliation(s)
- Jae Ho Choi
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.H.C.); (S.M.K.); (G.H.L.); (S.W.J.)
| | - Seul Mi Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.H.C.); (S.M.K.); (G.H.L.); (S.W.J.)
| | - Gi Ho Lee
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.H.C.); (S.M.K.); (G.H.L.); (S.W.J.)
| | - Sun Woo Jin
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.H.C.); (S.M.K.); (G.H.L.); (S.W.J.)
| | - Hyun Sun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 28116, Korea;
| | - Young Chul Chung
- Department of Food and Medicine, College of Public Health and Natural Science, International University of Korea, Jinju 52833, Korea;
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.H.C.); (S.M.K.); (G.H.L.); (S.W.J.)
- Correspondence: ; Tel.: +82-42-821-5936
| |
Collapse
|
16
|
Microarray Analysis For Expression Profiles of lncRNAs and circRNAs in Rat Liver after Brain-Dead Donor Liver Transplantation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5604843. [PMID: 31828106 PMCID: PMC6881575 DOI: 10.1155/2019/5604843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/01/2019] [Accepted: 07/18/2019] [Indexed: 12/18/2022]
Abstract
The mechanisms underlying severe liver injury after brain-dead (BD) donor liver transplantation (BDDLT) remain unclear. In this study, we aimed to explore the roles of lncRNAs and circRNAs in liver injury after BDDLT. Rat liver injury was detected in the sham, BD, control, and BDDLT groups. We examined the expression profiles of lncRNAs and circRNAs in the livers of the BDDLT and control group using microarray analysis. The main functions of the differentially expressed genes were analyzed by gene ontology (GO) and KEGG pathway enrichment analysis. In addition, we used bioinformatic analyses to construct related expression networks. Liver injury was aggravated in the BD and BDDLT groups. We found various mRNAs, lncRNAs, and circRNAs that were differentially expressed in the BDDLT group compared with those in the control group. Coding-noncoding gene co-expression (CNC) network analysis showed that expression of the lncRNA LOC102553657 was associated with that of the apoptosis-related genes including HMOX1 and ATF3. Furthermore, competing endogenous RNAs (ceRNAs) network analysis revealed that the lncRNA LOC103692832 and rno_circRNA_007609 were ceRNAs of rno-miR-135a-5p targeting Atf3, Per2, and Mras. These results suggest that lncRNAs and circRNAs play important roles in the pathogenesis and development of liver injury during BDDLT.
Collapse
|
17
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019; 6:91. [PMID: 31750312 PMCID: PMC6843074 DOI: 10.3389/fmolb.2019.00091] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K. Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
18
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019. [PMID: 31750312 DOI: 10.3389/fmolb.2019.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
19
|
Current Status in Testing for Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH). Cells 2019; 8:cells8080845. [PMID: 31394730 PMCID: PMC6721710 DOI: 10.3390/cells8080845] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries with almost 25% affected adults worldwide. The growing public health burden is getting evident when considering that NAFLD-related liver transplantations are predicted to almost double within the next 20 years. Typically, hepatic alterations start with simple steatosis, which easily progresses to more advanced stages such as nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis. This course of disease finally leads to end-stage liver disease such as hepatocellular carcinoma, which is associated with increased morbidity and mortality. Although clinical trials show promising results, there is actually no pharmacological agent approved to treat NASH. Another important problem associated with NASH is that presently the liver biopsy is still the gold standard in diagnosis and for disease staging and grading. Because of its invasiveness, this technique is not well accepted by patients and the method is prone to sampling error. Therefore, an urgent need exists to find reliable, accurate and noninvasive biomarkers discriminating between different disease stages or to develop innovative imaging techniques to quantify steatosis.
Collapse
|
20
|
Ming N, Na HST, He JL, Meng QT, Xia ZY. Propofol alleviates oxidative stress via upregulating lncRNA-TUG1/Brg1 pathway in hypoxia/reoxygenation hepatic cells. J Biochem 2019; 166:415-421. [PMID: 31297532 DOI: 10.1093/jb/mvz054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Abstract
Reducing oxidative stress is an effective method to prevent hepatic ischaemia/reperfusion injury (HIRI). This study focuses on the role of propofol on the oxidative stress of hepatic cells and the involved lncRNA-TUG1/Brahma-related gene 1 (Brg1) pathway in HIRI mice. The mouse HIRI model was established and was intraperitoneally injected with propofol postconditioning. Hepatic injury indexes were used to evaluate HIRI. The oxidative stress was indicated by increasing 8-isoprostane concentration. Mouse hepatic cell line AML12 was treated with hypoxia and subsequent reoxygenation (H/R). The targeted regulation of lncRNA-TUG1 on Brg1 was proved by RNA pull-down, RIP (RNA-binding protein immunoprecipitation) and the expression level of Brg1 responds to silencing or overexpression of lncRNA-TUG1. Propofol alleviates HIRI and induces the upregulation of lncRNA-TUG1 in the mouse HIRI model. Propofol increases cell viability and lncRNA-TUG1 expression level in H/R-treated hepatic cells. In H/R plus propofol-treated hepatic cells, lncRNA-TUG1 silencing reduces cell viability and increased oxidative stress. LncRNA-TUG1 interacts with Brg1 protein and keeps its level via inhibiting its degradation. Brg1 overexpression reverses lncRNA-TUG1 induced the reduction of cell viability and the increase in oxidative stress. LncRNA-TUG1 silencing abrogates the protective role of propofol against HIRI in the mouse HIRI model. LncRNA-TUG1 has a targeted regulation of Brg1, and thereby affects the oxidative stress induced by HIRI. This pathway mediates the protective effect of propofol against HIRI of hepatic cell.
Collapse
Affiliation(s)
- Nuo Ming
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Ha Sen Ta Na
- Department of Anesthesiology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Jin-Ling He
- Department of Anesthesiology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
21
|
Perera BPU, Svoboda L, Dolinoy DC. Genomic Tools for Environmental Epigenetics and Implications for Public Health. CURRENT OPINION IN TOXICOLOGY 2019; 18:27-33. [PMID: 31763499 DOI: 10.1016/j.cotox.2019.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epigenetics refers to the study of mitotically heritable and potentially reversible changes in gene expression unrelated to the DNA sequence itself, influenced by epigenetic marks including chromatin modifications, non-coding RNA and alterations to DNA itself via methylation and hydroxymethylation. Epigenetics has taken center stage in the study of diseases such as cancer, diabetes, and neurodegeneration; however, its integration into the field of environmental health sciences and toxicology (e.g. Toxicoepigenetics) is in its infancy. This review highlights the need to evaluate surrogate and target tissues in the field of toxicoepigenetics as the National Institute of Environmental Health Sciences (NIEHS) multi-phased Toxicant Exposure and Response by Genomic and Epigenomic Regulators of Transcription (TaRGET) consortia make headway, and the emergence of non-coding RNA biomarkers. The review also discusses lead (Pb) as a potential toxicoepigenetic exposure, where pre- and post-natal Pb exposure is associated with reprogramming of DNA methylation, histone modifications, and microRNA expression, representing potential biomarkers or predictors for Pb-induced health outcomes. Finally, new advances in epigenome editing, highlighting the potential of small ncRNA, will be explored for environmental health sciences research.
Collapse
Affiliation(s)
- Bambarendage P U Perera
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI
| | - Laurie Svoboda
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI
| | - Dana C Dolinoy
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI
- University of Michigan School of Public Health, Department of Nutritional Sciences, Ann Arbor, MI
| |
Collapse
|