1
|
Wang T, Yang J, Wang G, Zhao F, Jin Y. Factors ameliorate pro-inflammatory microglia polarization through inhibition of reactive astrocytes induced by 2-chloroethanol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115130. [PMID: 37311391 DOI: 10.1016/j.ecoenv.2023.115130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/15/2023]
Abstract
Our previous studies have demonstrated that the crosstalk between astrocytes and microglia may trigger and amplify the neuroinflammatory response and, in turn, cause brain edema in 1,2-dichloroethane (1,2-DCE)-intoxicated mice. Moreover, findings from our in vitro studies showed that astrocytes are more sensitive to 2-chloroethanol (2-CE), an intermediate metabolite of 1,2-DCE, than microglia, and 2-CE-induced reactive astrocytes (RAs) can promote microglia polarization through releasing the pro-inflammatory mediators. Therefore, it is essential to explore therapeutic agents that may ameliorate microglia polarization through inhibition of 2-CE-induced RAs, which remains unclear till now. Results of this study revealed that exposure to 2-CE could induce RAs with pro-inflammatory effects, and fluorocitrate (FC), GIBH-130 (GI) and diacerein (Dia) pretreatment could all abolish the pro-inflammatory effects of 2-CE-induced RAs. FC and GI pretreatment might suppress 2-CE-induced RAs through inhibition of p38 mitogen-activated protein kinase (p38 MAPK)/activator protein-1 (AP-1) and nuclear factor-kappaB (NF-κB) signaling pathways, but Dia pretreatment might only inhibit p38 MAPK/NF-κB signaling pathway. FC, GI, and Dia pretreatment could all suppress the pro-inflammatory microglia polarization through inhibition of 2-CE-induced RAs. Meanwhile, GI and Dia pretreatment could also restored the anti-inflammatory microglia polarization via inhibition of 2-CE-induced RAs. However, FC pretreatment could not affect the anti-inflammatory polarization of microglia through inhibition of 2-CE-induced RAs. Taken together, findings from the present study demonstrated that FC, GI, and Dia might be the potential candidates with different characteristic for therapeutic use in 1,2-DCE poisoning.
Collapse
Affiliation(s)
- Tong Wang
- Department of Basic Medical Sciences, School of medicine, Taizhou University, Jiaojiang 318000, Zhejiang, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jinhan Yang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Yang J, Zhang L, Wang T, Zhang J, Li M, Jin X, Tan X, Wang G, Zhao F, Jin Y. Synergistic effects of combined treatment of 1,2-dichloroethane and high-dose ethanol on liver damage in mice and the related mechanisms. Food Chem Toxicol 2023; 176:113812. [PMID: 37150348 DOI: 10.1016/j.fct.2023.113812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Our previous studies have shown that the metabolism of 1,2-dichloroethane (1,2-DCE) mediated by CYP2E1 could result in oxidative damage in the liver of mice. In the current study, we further investigated the effects of combined treatment with 1,2-DCE and high dose ethanol on liver and the mechanisms since both of them can be metabolized by CYP2E1 in the liver. There are several novel findings in the current study. First, combined treatment of mice with 1,2-DCE and high-dose ethanol could synergistically upregulate both protein and mRNA levels of CYP2E1, which might aggravate liver damage through CYP2E1-mediated oxidative stress. Second, the combined treatment could also synergistically trigger NLRP3 inflammasome activation and inflammatory responses in the liver. Third, the combined treatment synergistically upregulated the antioxidant defence systems in response to oxidative stress, however the compensatory mechanisms of antioxidant defence systems appeared to be insufficient to protect liver damage in the mice. Finally, the upregulated CYP2E1 expression was confirmed by using its specific inhibitor to play the crucial roles in liver damage in the mice during the combined treatment.
Collapse
Affiliation(s)
- Jinhan Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, People's Republic of China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Lin Zhang
- Department of Community Nursing, School of Nursing, Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China.
| | - Tong Wang
- Department of Basic Medical Sciences, Medical School, Taizhou University, Taizhou, 318000, Zhejiang, People's Republic of China.
| | - Jiajia Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, People's Republic of China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Mingyue Li
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, People's Republic of China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Xiaoxia Jin
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, No. 146 Huanghe North Street, Yuhong District, Shenyang, 110034, Liaoning, People's Republic of China.
| | - Xiaoqiong Tan
- Centers for Disease Control and Prevention, Baodi District, 301800, Tianjin, People's Republic of China.
| | - Gaoyang Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, People's Republic of China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Fenghong Zhao
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, People's Republic of China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Yaping Jin
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, People's Republic of China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
3
|
Huang W, Wang Z, Wang G, Li K, Jin Y, Zhao F. Disturbance of glutamate metabolism and inhibition of CaM-CaMKII-CREB signaling pathway in the hippocampus of mice induced by 1,2-dichloroethane exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119813. [PMID: 35868470 DOI: 10.1016/j.envpol.2022.119813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
1,2-Dichloroethane (1,2-DCE) is a highly toxic neurotoxicity, and the brain tissue is the main target organ. At present, long-term exposure to 1,2-DCE has been shown to cause cognitive dysfunction in some studies, but the mechanism is not clear. The results of this study showed that long-term 1,2-DCE exposure decreased learning and memory abilities in mice and impaired the structure and morphology of neurons in the hippocampal region. Moreover, except for the mRNA level of PAG, the enzymatic activities and protein levels of GS and PAG, as well as the mRNA level of GS were inhibited. With increasing dose of exposure, the protein and mRNA expression of GLAST and GLT-1 also decreased. Contrarily, there were protein and mRNA expression upregulation of GluN1, GluN2A and GluN2B in the hippocampus, as well as increased levels of extracellular Glu and intracellular Ca2+. In addition, 1,2-DCE exposure also downregulated the protein expression levels of CaM, CaMKII and CREB. Taken together, our results suggest that long-term 1,2-DCE exposure impairs the learning and memory capacity in mice, which may be attributed to the disruption of Glu metabolism and the inhibition of CaM- CaMKII-CREB signaling pathway in the hippocampus.
Collapse
Affiliation(s)
- Weiyu Huang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Zijiang Wang
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang, Liaoning, People's Republic of China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Kunyang Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
4
|
Zhong Y, Liang B, Meng H, Ye R, Li Z, Du J, Wang B, Zhang B, Huang Y, Lin X, Hu M, Rong W, Wu Q, Yang X, Huang Z. 1,2-Dichloroethane induces cortex demyelination by depressing myelin basic protein via inhibiting aquaporin 4 in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113180. [PMID: 35026584 DOI: 10.1016/j.ecoenv.2022.113180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
1,2-Dichloroethane (1,2-DCE) is a pervasive environmental pollutant, and overexposure to this hazardous material causes brain edema and demyelination in humans. We found that 1,2-DCE inhibits aquaporin 4 (AQP4) and is a primary pathogenic effector of 1,2-DCE-induced brain edema in animals. However, AQP4 down-regulation's link with cortex demyelination after 1,2-DCE exposure remains unclear. Thus, we exposed wild-type (WT) CD-1 mice and AQP4 knockout (AQP4-KO) mice to 0, 100, 350 and 700 mg/m3 1,2-DCE by inhalation for 28 days. We applied label-free proteomics and a cell co-culture system to elucidate the role of AQP4 inhibition in 1,2-DCE-induced demyelination. The results showed that 1,2-DCE down-regulated AQP4 in the WT mouse cortexes. Both 1,2-DCE exposure and AQP4 deletion induced neurotoxicity in mice, including increased brain water content, abnormal pathological vacuolations, and neurobehavioral damage. Tests for interaction of multiple regression analysis highlighted different effects of 1,2-DCE exposure level depending on the genotype, indicating the core role of AQP4 in regulation on 1,2-DCE-caused neurotoxicity. We used label-free quantitative proteomics to detect differentially expressed proteins associated with 1,2-DCE exposure and AQP4 inhibition, and identified down-regulation in myelin basic protein (MBP) and tyrosine-protein kinase Fyn (FYN) in a dose-dependent manner in WT mice but not in AQP4-KO mice. 1,2-DCE and AQP4 deletion separately resulted in demyelination, as detected by Luxol fast blue staining, and manifested as disordered nerve fibers and cavitation in the cortexes. Western blot and immunofluorescence confirmed the decreased AQP4 in the astrocytes and the down-regulated MBP in the oligodendrocytes by 1,2-DCE exposure and AQP4 inhibition, respectively. Finally, the co-culture results of SVG p12 and MO3.13 cells showed that 1,2-DCE-induced AQP4 down-regulation in the astrocytes was responsible for demyelination, by decreasing MBP in the oligodendrocytes. In conclusion, 1,2-DCE induced cortex demyelination by depressing MBP via AQP4 inhibition in the mice.
Collapse
Affiliation(s)
- Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hao Meng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Du
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bo Wang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bingli Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xi Lin
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Manjiang Hu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Weifeng Rong
- Department of Hygiene Monitor, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Qinghong Wu
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Xingfen Yang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Wang T, Sun Q, Yang J, Wang G, Zhao F, Chen Y, Jin Y. Reactive astrocytes induced by 2-chloroethanol modulate microglia polarization through IL-1β, TNF-α, and iNOS upregulation. Food Chem Toxicol 2021; 157:112550. [PMID: 34517076 DOI: 10.1016/j.fct.2021.112550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 01/06/2023]
Abstract
The synthetic organic chemical, 1,2-dichloroethane (1,2-DCE), can cause brain edemas under subacute poisoning. Our previous studies indicated that neuroinflammation could be induced due to astrocytes and microglia activation during brain edemas in 1,2-DCE-intoxicated mice. However, the crosstalk between these two glial cells in 1,2-DCE-induced neuroinflammation remained unclear. In this study, primary cultured rat astrocytes and microglia, as well as an immortalized microglia cell line were employed to study the effects of 2-chloroethanol (2-CE, a 1,2-DCE intermediate metabolite in vivo) treated astrocytes on microglia polarization. Our current results revealed that 2-CE treated rat astrocytes were activated through p38 mitogen-activated protein kinase (p38 MAPK)/nuclear factor-κB (NF-κB), and activator protein-1 (AP-1) signaling pathways. Theses pathways were triggered by reactive oxygen species (ROS) produced during 2-CE metabolism. Also, astrocytes were more sensitive to 2-CE effects than microglia. Interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS) expressions were upregulated in 2-CE-induced reactive astrocytes, enhancing IL-1β, TNF-α, and nitric oxide (NO) excretions, which stimulated microglia polarization. Therefore, the neuroinflammation induced by 1,2-DCE in mice's brains is probably triggered by reactive astrocytes.
Collapse
Affiliation(s)
- Tong Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Qi Sun
- Department of Child and Adolescent Health, China Medical University, Shenyang, China
| | - Jinhan Yang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yuhua Chen
- Department of Developmental Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Jia W, Liu J, Hu R, Hu A, Tang W, Li L, Li J. Xiaochaihutang Improves the Cortical Astrocyte Edema in Thioacetamide-Induced Rat Acute Hepatic Encephalopathy by Activating NRF2 Pathway. Front Pharmacol 2020; 11:382. [PMID: 32372950 PMCID: PMC7179068 DOI: 10.3389/fphar.2020.00382] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress induced by high ammonia, which leads to astrocyte edema, is the key to acute hepatic encephalopathy (AHE). Nuclear factor erythroid 2-related factor 2 (NRF2) has been implicated in oxidative stress, but the mechanism of NRF2 against ammonia-induced astrocytes edema has not been fully studied. We confirmed that the NRF2 pathway is related to brain edema caused by AHE and found that Xiaochaihutang (XCHT) could effectively activate the NRF2 pathway to treat AHE. The model of AHE was established with thioacetamide (TAA) in rats. Rat behaviors were observed, brain water content, blood ammonia levels, glutamine synthetase (GS), malondialdehyde (MDA), and total superoxide dismutase (T-SOD) were determined after XCHT treatment. Furthermore, the expression of NRF2 pathway proteins and mRNA, glial fibrillary acidic protein (GFAP) and aquaporins 4 (AQP4) were examined. In order to determine whether XCHT has a direct effect on cerebral edema caused by high ammonia, we examined the effect of XCHT compound serum on cortical astrocytes in the presence of ammonia, through microscopic observation and immunofluorescence (IF). Results showed that AHE induced by TAA changed the behavior of the rats, and increased brain water content, blood ammonia levels, GS and MDA content meanwhile decreasing T-SOD, but these symptoms were improved by treatment with XCHT. XCHT protected brain edema by activating the NRF2 pathway and increasing the expression of downstream proteins and genes. Astrocytes treated with 5 mM ammonia also showed an increase in the AQP4 protein expression but a decrease in XCHT compound serum and ammonia-induced cell edema groups. This study demonstrates that the NRF2 pathway is involved in the brain edema in AHE, and XCHT may represent a useful prescription for the treatment of AHE.
Collapse
Affiliation(s)
- Weiyi Jia
- Key Laboratory of Infectious Disease and Biosafety, and Provincial Department of Education, Zunyi Medical University, Zunyi, China.,Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, China
| | - Jiajia Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Rui Hu
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Anling Hu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Weiwei Tang
- Department of Pathophysiology, Basic Medical College, Zunyi Medical University, Zunyi, China
| | - Lijuan Li
- Department of Pathophysiology, Basic Medical College, Zunyi Medical University, Zunyi, China
| | - Jin Li
- Key Laboratory of Infectious Disease and Biosafety, and Provincial Department of Education, Zunyi Medical University, Zunyi, China.,Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
7
|
Upregulation of CYP2E1 expression causes oxidative damage induced by 2-chloroethanol in primary cultured rat astrocytes. Neurotoxicology 2019; 75:233-244. [PMID: 31585129 DOI: 10.1016/j.neuro.2019.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
Brain edema caused by subacute poisoning with 1,2-dichloroethane (1,2-DCE) has gained much attention during recent years, but its underlying mechanism is poorly understood. As an intermediate metabolite of 1,2-DCE in vivo, 2-chloroethanol (2-CE) can be transformed into chloroacetaldehyde and reactive oxygen species (ROS) through cytochrome P450 2E1 (CYP2E1) mediated metabolism. In previous studies, it was found that CYP2E1 expression is enhanced in the brain of mice treated with 1,2-DCE. This study was designed to verify the roles of CYP2E1 overexpression in 2-CE induced cytotoxicity in rat astrocytes, and the contribution of specific signaling molecules to the upregulation of CYP2E1 expression caused by 2-CE. The results of this study demonstrate that treatment with 2-CE can enhance CYP2E1 protein and mRNA levels, cause an increase in ROS and MDA levels, and higher percentages of apoptotic cells in rat astrocytes. Pretreatment with either diallyl sulfide or vitamin C, the inhibitor of CYP2E1 or scavenger of ROS, respectively, can suppress the levels of CYP2E1 expression, ROS and MDA, ameliorate cell apoptosis, and attenuate phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in these cells. Additionally, pretreatment with the inhibitor of either ERK1/2 or transcriptional factor specificity protein 1 (SP1) can suppress the CYP2E1 expression, and alleviate the oxidative damage caused to these cells. In conclusion, our findings demonstrate that CYP2E1 overexpression plays a crucial role in 2-CE induced oxidative damage of rat astrocytes, and that CYP2E1 expression is upregulated partially through the activation of the ERK1/2 and SP1 signaling pathways by ROS generated during CYP2E1-mediated 2-CE metabolism. This study provides novel information that can be used in elucidating the mechanism by which 1,2-DCE induces brain edema.
Collapse
|
8
|
Jin X, Wang T, Liao Y, Guo J, Wang G, Zhao F, Jin Y. Neuroinflammatory Reactions in the Brain of 1,2-DCE-Intoxicated Mice during Brain Edema. Cells 2019; 8:cells8090987. [PMID: 31461951 PMCID: PMC6770564 DOI: 10.3390/cells8090987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
We previously reported that expression of matrix metalloproteinase-9 (MMP-9) mRNA and protein was upregulated during 1,2-dichloroethane (1,2-DCE) induced brain edema in mice. We also found that the p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway resulted in MMP-9 overexpression and nuclear factor-κB (NF-κB) activation in mice treated with 1,2-DCE. In this study, we further hypothesized that inflammatory reactions mediated by the p38 MAPK/ NF-κB signaling pathway might be involved in MMP-9 overexpression, blood–brain barrier (BBB) disruption and edema formation in the brain of 1,2-DCE-intoxicated mice. Our results revealed that subacute poisoning by 1,2-DCE upregulates protein levels of glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule 1 (Iba-1), interleukin-1β (IL-1β), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), inducible nitric oxide synthase (iNOS) and p-p65 in mouse brains. Pretreatment with an inhibitor against p38 MAPK attenuates these changes. Moreover, pretreatment with an inhibitor against NF-κB attenuates alterations in brain water content, pathological indications notable in brain edema, as well as mRNA and protein expression on levels of MMP-9, VCAM-1, ICAM-1, iNOS, and IL-1β, tight junction proteins (TJs), GFAP and Iba-1 in the brain of 1,2-DCE-intoxicated mice. Furthermore, pretreatment with an inhibitor against MMP-9 obstructs the decrease of TJs in the brain of 1,2-DCE-intoxicated mice. Lastly, pretreatment with an antagonist against the IL-1β receptor also attenuates changes in protein levels of p-p38 MAPK, p-p65, p-IκB, VCAM -1, ICAM-1, IL-1β, and Iba-1 in the brain of 1,2-DCE-intoxicated-mice. Taken together, findings from the current study indicate that the p38 MAPK/ NF-κB signaling pathway might be involved in the activation of glial cells, and the overproduction of proinflammatory factors, which might induce inflammatory reactions in the brain of 1,2-DCE-intoxicated mice that leads to brain edema.
Collapse
Affiliation(s)
- Xiaoxia Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang 110034, Liaoning Province, China
| | - Tong Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Yingjun Liao
- Department of Physiology, China Medical University, Shenyang 110122, Liaoning, China
| | - Jingjing Guo
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|