1
|
Sahu M, Kamakshi, Sahoo J, Swain SR, Chauhan M, Goyal R, Gupta S, Kaur K. Phytochemical investigation and characterisation of methanolic extract of Glycine max seeds using LCMS/MS and in silico studies for wound healing activity. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5045. [PMID: 38837562 DOI: 10.1002/jms.5045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Soybean is scientifically known as Glycine max. It belongs to the Fabaceae family. It consists of a lot of bioactive phytochemicals like saponin, phenolic acid, flavonoid, sphingolipids and phytosterols. It also owns excellent immune-active effects in the physiological system. Soy and its phytochemicals have been found to have pharmacological properties that include anticancer, antioxidant, anti-hypercholesterolaemic, anti-diabetic, oestrogenic, anti-hyperlipidaemic, anti-inflammatory, anti-obesity, anti-hypertensive, anti-mutagenic, immunomodulatory, anti-osteoporotic, antiviral, hepatoprotective, antimicrobial, goitrogenic anti-skin ageing, wound healing, neuroprotective and anti-photoageing activities. Present study has been designed to set standard pharmacognostical extraction method, complexation of compounds, qualitative evaluation through phytochemical screening, identification by TLC, physicochemical properties, solubility profile, total phenolic, flavonoid content as well as analytical evaluation or characterisation like UV and FT-IR of methanolic extract of G. max. The final observations like physicochemical properties such as total ash value, LOD and pH were recorded. Phytochemical screenings show the presence of flavonoid, alkaloid, saponin, carbohydrate, tannins, protein, gums and mucilage, fixed oils and fats. The results were found significant. Further in silico studies proved creatinine and euparin to be potent wound healing agents.
Collapse
Affiliation(s)
- Madhusmita Sahu
- Department of Pharmacy, SRM Institute of Science and Technology (Delhi-NCR Campus), Ghaziabad, Uttar Pradesh, India
| | - Kamakshi
- Department of Biology (Faculty of Science and Humanities), SRM Institute of Science and Technology (Delhi-NCR Campus), Ghaziabad, Uttar Pradesh, India
| | - Jyotirmaya Sahoo
- School of Pharmacy, Arkajain University, Gamharia, Jharkhand, India
| | | | - Manisha Chauhan
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Dr. A.P.J. Abdul Kalam Technical University, Meerut, Uttar Pradesh, India
| | - Riya Goyal
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Dr. A.P.J. Abdul Kalam Technical University, Meerut, Uttar Pradesh, India
| | - Sakshi Gupta
- MIT College of Pharmacy, MIT Campus, Moradabad, Uttar Pradesh, India
| | - Komalpreet Kaur
- MIT College of Pharmacy, MIT Campus, Moradabad, Uttar Pradesh, India
| |
Collapse
|
2
|
Huang Y, Zhu Q, Zhu Y, Valencak TG, Han Y, Ren T, Guo C, Ren D. Rapid UV Photo-Cross-Linking of α-Lactalbumin Hydrogel Biomaterial To Enable Wound Healing. ACS OMEGA 2024; 9:401-412. [PMID: 38222502 PMCID: PMC10785314 DOI: 10.1021/acsomega.3c05793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
Although both the function and biocompatibility of protein-based biomaterials are better than those of synthetic materials, their usage as medical material is currently limited by their high costs, low yield, and low batch-to-batch reproducibility. In this article, we show how α-lactalbumin (α-LA), rich in tryptophan, was used to produce a novel type of naturally occurring, protein-based biomaterial suitable for wound dressing. To create a photo-cross-linkable polymer, α-LA was methacrylated at a 100-g batch scale with >95% conversion and 90% yield. α-LAMA was further processed using photo-cross-linking-based advanced processing techniques such as microfluidics and 3D printing to create injectable hydrogels, monodispersed microspheres, and patterned scaffolds. The obtained α-LAMA hydrogels show promising biocompatibility and degradability during in vivo testing. Additionally, the α-LAMA hydrogel can accelerate post-traumatic wound healing and promote new tissue regeneration. In conclusion, cheap and safe α-LAMA-based biomaterials could be produced, and they have a beneficial effect on wound healing. As a result, there may arise a potential partnership between the dairy industry and the development of pharmaceuticals.
Collapse
Affiliation(s)
- Yaqing Huang
- Institute
of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310027, China
| | - Qinchao Zhu
- Institute
of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310027, China
| | - Yang Zhu
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Teresa G. Valencak
- Institute
of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310027, China
| | - Ying Han
- The
State Key Laboratory of Fluid Power and Mechatronic Systems, School
of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tanchen Ren
- Department
of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province,
Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Chengchen Guo
- School
of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China
| | - Daxi Ren
- Institute
of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Si L, Guo X, Bera H, Chen Y, Xiu F, Liu P, Zhao C, Abbasi YF, Tang X, Foderà V, Cun D, Yang M. Unleashing the healing potential: Exploring next-generation regenerative protein nanoscaffolds for burn wound recovery. Asian J Pharm Sci 2023; 18:100856. [PMID: 38204470 PMCID: PMC10777420 DOI: 10.1016/j.ajps.2023.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/15/2023] [Accepted: 10/07/2023] [Indexed: 01/12/2024] Open
Abstract
Burn injury is a serious public health problem and scientists are continuously aiming to develop promising biomimetic dressings for effective burn wound management. In this study, a greater efficacy in burn wound healing and the associated mechanisms of α-lactalbumin (ALA) based electrospun nanofibrous scaffolds (ENs) as compared to other regenerative protein scaffolds were established. Bovine serum albumin (BSA), collagen type I (COL), lysozyme (LZM) and ALA were separately blended with poly(ε-caprolactone) (PCL) to fabricate four different composite ENs (LZM/PCL, BSA/PCL, COL/PCL and ALA/PCL ENs). The hydrophilic composite scaffolds exhibited an enhanced wettability and variable mechanical properties. The ALA/PCL ENs demonstrated higher levels of fibroblast proliferation and adhesion than the other composite ENs. As compared to PCL ENs and other composite scaffolds, the ALA/PCL ENs also promoted a better maturity of the regenerative skin tissues and showed a comparable wound healing effect to Collagen spongeⓇ on third-degree burn model. The enhanced wound healing activity of ALA/PCL ENs compared to other ENs could be attributed to their ability to promote serotonin production at wound sites. Collectively, this investigation demonstrated that ALA is a unique protein with a greater potential for burn wound healing as compared to other regenerative proteins when loaded in the nanofibrous scaffolds.
Collapse
Affiliation(s)
- Liangwei Si
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Xiong Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, 713206, India
| | - Yang Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Fangfang Xiu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Peixin Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Chunwei Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Yasir Faraz Abbasi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen O, Denmark
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen O, Denmark
| |
Collapse
|
4
|
Wang H, Zhou Z, Xie J, Qi S, Tang J. Integration of single-cell and bulk transcriptomics reveals immune-related signatures in keloid. J Cosmet Dermatol 2023; 22:1893-1905. [PMID: 36701151 DOI: 10.1111/jocd.15649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Keloid is a pathological dermatological condition that manifests as an overgrowth scar secondary to skin trauma. This study endeavored to excavate immune-related signatures of keloid based on single-cell RNA (scRNA) sequencing data and bulk RNA sequencing data. METHOD The keloid-relevant scRNA sequencing dataset GSE163973 and bulk RNA sequencing dataset GSE113619 were mined from the GEO database. The "Seurat" R package was utilized for data quality control, cell clustering, and investigation of marker genes of each cell cluster. The "SingleR" package helped match the marker genes of the corresponding cluster to specific cell types. Moreover, the R package "Monocle" was deployed for pseudotemporal ordering analysis, and the "clusterProfiler" was applied for functional and pathway enrichment analysis. The immune-related signatures were then identified, and potential targeted drugs were predicted via the DGIdb database. Verification of the immune-related signatures in clinical validation samples was implemented by RT-qPCR. RESULTS Totally 23 cell clusters were screened and classified into 10 cell types based on the scRNA sequencing data. The keloid group had a significantly higher endothelial cell proportion than the control group. As enrichment analysis was applied in both differentially expressed genes (DEGs) of scRNA and bulk RNA sequencing data, we found they were enriched in multiple common immune-related pathways and biological processes. Meanwhile, we acquired three immune-related signatures (VCAM1, CALCRL, and HLA-DPB1) by intersecting the above DEGs with immune-related genes (IRGs). Then, we predicted 16 drugs potentially targeting the biomarkers through the DGIdb database. Finally, the outcome of RT-qPCR of clinical validation samples further verified the results. CONCLUSION In conclusion, we analyzed the cell types and functional differences in the keloid through scRNA and bulk RNA sequencing data. We identified three immune-related signatures (VCAM1, CALCRL, and HLA-DPB1) in keloid, providing a basis for further in-depth investigation of the molecular mechanisms of keloid and exploration of therapeutic targets.
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ziheng Zhou
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Julin Xie
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaohai Qi
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinming Tang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Charoensin S, Weera W. Preventive Effect of Nuciferine on H 2O 2-Induced Fibroblast Senescence and Pro-Inflammatory Cytokine Gene Expression. Molecules 2022; 27:molecules27238148. [PMID: 36500241 PMCID: PMC9741010 DOI: 10.3390/molecules27238148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Human dermal fibroblasts play an important role in skin homeostasis by producing and degrading extracellular matrix components. They have more replicative senescence when exposed to environmental and oxidative insults, resulting in human skin aging. However, this phenomenon can be mitigated by antioxidant phytochemicals. The aim of the present study was to investigate the potential of nuciferine (an alkaloid from Nelumbo nucifera leaf) in preventing stress-induced fibroblast senescence by using a hydrogen-peroxide (H2O2)-induced senescence model. We found that H2O2 treatment resulted in a significant increase in senescence-associated β-galactosidase (SA-β-gal)-positive cells. Nuciferine-treated cells, however, showed a reduction in senescent phenotype. Furthermore, we observed the key molecular markers including the senescence-associated secretory phenotype (SASP) and cell cycle regulators. The mRNA levels of CXCL1, CXCL2, IL-6, and IL-8 (pro-inflammatory cytokines) reduced significantly in nuciferine-treated cells. The extracellular IL-6 and IL-8 levels were also decreased in treated cells, whereas the key cell cycle regulators (p16 and p21) were markedly affected by nuciferine at the highest concentration. The results of the present study clearly show that the preventive activity of nuciferine against H2O2-induced senescence in dermal fibroblasts is fundamental and promising for further applications in anti-aging product research and development.
Collapse
Affiliation(s)
- Suphachai Charoensin
- Division of Nutrition, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence in Mathematical Biosciences, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
- Correspondence: ; Tel.: +66-82-783-4991
| | - Wajaree Weera
- Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
6
|
Chiocchetti R, De Silva M, Aspidi F, Cunha RZ, Gobbo F, Tagliavia C, Sarli G, Morini M. Distribution of Cannabinoid Receptors in Keratinocytes of Healthy Dogs and Dogs With Atopic Dermatitis. Front Vet Sci 2022; 9:915896. [PMID: 35873682 PMCID: PMC9305491 DOI: 10.3389/fvets.2022.915896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/20/2022] [Indexed: 01/15/2023] Open
Abstract
It is commonly accepted that some form of skin barrier dysfunction is present in canine atopic dermatitis (AD), one of the most common cutaneous pruritic inflammatory diseases of dogs. The impaired skin barrier function facilitates the penetration of allergens and subsequently stronger sensitization responses. The role of the endocannabinoid system (ECS) in the physiology and pathology of the skin is becoming increasingly established. It has been demonstrated that cannabinoid receptors are expressed in healthy and diseased skin and, based on current knowledge, it could be stated that cannabinoids are important mediators in the skin. The present study has been designed to immunohistochemically investigate the expression of the cannabinoid receptors type 1 (CB1R) and 2 (CB2R) and the cannabinoid-related receptors G protein-coupled receptor 55 (GPR55), transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), peroxisome proliferator-activated receptors alpha (PPARα), and serotoninergic receptor 1a (5-HT1aR) in keratinocytes of healthy dogs and of dogs with AD. Samples of skin tissues were collected from 7 healthy controls (CTRL-dogs) and from 8 dogs with AD (AD-dogs). The tissue samples were processed using an immunofluorescence assay with commercially available antibodies, and the immunolabelling of the receptors studied was quantitatively evaluated. The keratinocytes of the CTRL- and the AD-dogs showed immunoreactivity for all the receptors investigated with a significant upregulation of CB2R, TRPA1, and 5-HT1aR in the epidermis of the AD-dogs. The presence of cannabinoid and cannabinoid-related receptors in healthy keratinocytes suggested the possible role of the ECS in canine epidermal homeostasis while their overexpression in the inflamed tissues of the AD-dogs suggested the involvement of the ECS in the pathogenesis of this disease, having a possible role in the related skin inflammation and itching. Based on the present findings, the ECS could be considered a potential therapeutic target for dogs with AD.
Collapse
|
7
|
Gupta D, Kaushik D, Mohan V. Role of neurotransmitters in the regulation of cutaneous wound healing. Exp Brain Res 2022; 240:1649-1659. [PMID: 35488904 DOI: 10.1007/s00221-022-06372-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/13/2022] [Indexed: 11/04/2022]
Abstract
Wound healing is a highly coordinated and dynamic process of tissue repair after injury. The global burden of disease associated with wounds, both acute and chronic, is a significantly rising health concern. Upon skin wounding, neurons have the ability to sense the disruption to mediate the release of neurotransmitters into the wound microenvironment. Serotonin that has long been recognised as a potential vasoconstrictor is now also being contemplated to play a role in re-epithelialisation of wounds. While the role of neuropeptides in stimulating diabetic wound healing is being increasingly emphasised, on the other hand, dopamine is being widely studied for its dual role in mediating both pro- and antiangiogenic effects at the site of the wounds. Similarly, epinephrine levels that are known to be elevated during stress is now recognised as a contributing factor towards delayed wound closure, thereby serving as an inhibitor of wound healing. Thus, each neurotransmitter regulates wound repair and their active regeneration in a typical way. Strengthening our understanding of the molecular pathways via which the neurotransmitter modulates the immune system to control wound healing can yield potential therapeutic measures. Further investigations regarding the safety, efficacy, and cost-effectiveness of these processes are a prerequisite for their possible translation into clinical trials.
Collapse
Affiliation(s)
- Divya Gupta
- Department of Life Sciences, Neurosciences, Gurugram University, Sector-51, Gurugram, Haryana, India
| | - Dhirender Kaushik
- Department of Life Sciences, Neurosciences, Gurugram University, Sector-51, Gurugram, Haryana, India
| | - Vandana Mohan
- Department of Life Sciences, Neurosciences, Gurugram University, Sector-51, Gurugram, Haryana, India.
| |
Collapse
|
8
|
Liu Q, Sun H, Liu Y, Li X, Xu B, Li L, Jin W. HTR1A Inhibits the Progression of Triple-Negative Breast Cancer via TGF-β Canonical and Noncanonical Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105672. [PMID: 35199941 PMCID: PMC9036047 DOI: 10.1002/advs.202105672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Triple-negative breast cancer is the most aggressive subtype of breast cancer and the incidence of depression in breast cancer patients is high, which leading to worse survival and increased risk of recurrence. The effect of antidepressants on breast cancer patients remains contradictory, which might be due to variations in antidepression targets. Therefore, there is significant value to explore the antitumor potential of antidepressants and discover new therapeutic targets for breast patients. The authors screen antidepressant-related oncogenes or suppressors by using siRNAs. After combining functional experiments with online database analysis, 5-hydroxytryptamine receptor 1A (HTR1A is selected with antitumor potential in breast cancer cells in vivo and in vitro. RNA-seq analysis and coimmunoprecipitation assays indicate that HTR1A interacts with TRIM21 and PSMD7 to inhibit the degradation of TβRII through the ubiquitin-proteasome pathway, thereby inhibiting the transforming growth factor-β (TGF-β) canonical and noncanonical pathway. In addition, HTR1A is an independent predictive factor for breast cancer patients. The combined treatment of HTR1A agonists with demethylation drugs may significantly improve patient survival. It is of great significance to clarify the function and mechanism of the depression-related gene HTR1A in breast cancer, which might provide a new approach for triple-negative breast cancer patients.
Collapse
Affiliation(s)
- Qiqi Liu
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Hefen Sun
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yang Liu
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xuan Li
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Baojin Xu
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Liangdong Li
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Wei Jin
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
9
|
Abstract
Cannabis sativa L. plant is currently attracting increasing interest in cosmetics and dermatology. In this review, the biologically active compounds of hemp are discussed. Particularly the complex interactions of cannabinoids with the endocannabinoid system of the skin to treat various conditions (such as acne, allergic contact dermatitis, melanoma, and psoriasis) with clinical data. Moreover, the properties of some cannabinoids make them candidates as cosmetic actives for certain skin types. Hemp seed oil and its minor bioactive compounds such as terpenes, flavonoids, carotenoids, and phytosterols are also discussed for their added value in cosmetic formulation.
Collapse
|
10
|
Lei JA, Zhou Y, Qin ZL. [Research advances on inflammatory responses involved in keloid development]. ZHONGHUA SHAO SHANG ZA ZHI = ZHONGHUA SHAOSHANG ZAZHI = CHINESE JOURNAL OF BURNS 2021; 37:591-595. [PMID: 34167286 PMCID: PMC11917231 DOI: 10.3760/cma.j.cn501120-20200312-00154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Keloid is a hyperplastic pathological scar of body caused by infection, trauma, and surgery or formed spontaneously for unknown reasons. It is an excessive tissue response of body to dermal injury. The paper introduces the research advances on inflammatory responses involved in keloid development and keloid treatment by inhibiting inflammatory responses from the aspects of inflammation inducing factors, inflammatory cells, inflammatory mediators, inflammatory effectors, and influencing factors of inflammatory responses. The research results suggest that inflammatory responses are not only essential process to normal wound healing, but also key factors on keloid formation and development.
Collapse
Affiliation(s)
- J A Lei
- Department of Plastic Surgery,Peking University Third Hospital, Beijing 100191, China
| | - Y Zhou
- Department of Plastic Surgery,Peking University Third Hospital, Beijing 100191, China
| | - Z L Qin
- Department of Plastic Surgery,Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
11
|
Soliman M, Sadek AA, Abdelhamid HN, Hussein K. Graphene oxide-cellulose nanocomposite accelerates skin wound healing. Res Vet Sci 2021; 137:262-273. [PMID: 34052571 DOI: 10.1016/j.rvsc.2021.05.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
The usage of materials with the potential to accelerate wound healing is a great benefit for patients and health care systems. This study evaluated the impact of using graphene oxide (GO)-cellulose nanocomposite on skin wound healing via in vitro and in vivo investigations. The nanomaterial was synthesized and characterized. Cytocompatibility performance of the GO-cellulose was investigated through in vitro testing based on MTT and live/dead assays by EA.hy926 human endothelial cells (ECs). Additionally, the effect of GO-cellulose on induced wound scratch model using EA.hy926 ECs was investigated. Finally, the therapeutic effect of GO-cellulose was evaluated in vivo after the creation of two full-thickness wounds in the dorsum of rats (8 mm diameter). These wounds were randomly placed into two groups, the control group (10 wounds) and the GO-cellulose group (10 wounds), and monitored for gross and histopathological changes at 7 and 21 days after wound induction. MTT and Live/Dead assays showed excellent GO-cellulose cytocompatibility, whereas no difference in ECs viability was observed after culturing using conditioned media. GO-cellulose nanocomposite enhanced cell migration in the in vitro wound scratch assay. As compared to the control group, the GO-cellulose nanocomposite group's wound healing process was promoted in the in vivo rat skin wounds. Interestingly, wound re-epithelization and neovascularization were significantly accelerated in the GO-cellulose-treated rats. Furthermore, thick granulation tissue formation and intense collagen deposition were found in the GO-cellulose group. These findings showed that GO-cellulose has a promoting effect on skin wound healing, suggesting its promising and potential application in tissue regeneration.
Collapse
Affiliation(s)
- Mahmoud Soliman
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| | - Ahmed Abdelrahiem Sadek
- Department of Animal Surgery, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| | - Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt; Proteomics Laboratory for Clinical Research and Materials Science, Department of Chemistry, Assiut University, Assiut, Egypt.
| | - Kamal Hussein
- Department of Animal Surgery, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
12
|
Pooranachithra M, Satheesh Kumar C, Bhaskar JP, Venkateswaran K, Ravichandiran V, Balamurugan K. Proteomic analysis of Caenorhabditis elegans wound model reveals novel molecular players involved in repair. J Proteomics 2021; 240:104222. [PMID: 33831597 DOI: 10.1016/j.jprot.2021.104222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
Wound repair is a multistep process which involves coordination of multiple molecular players from different cell types and pathways. Though the cellular processes that are taking place in order to repair damage is already known, molecular players involved in crucial pathways are still scarce. In this regard, the present study intends to uncover crucial players that are involved in the central repair events through proteomics approach which included 2-D GE and LC-MS/MS using Caenorhabditis elegans wound model. Initial gel-based 2-D GE and following protein-protein interaction (PPI) network analyses revealed active role of calcium signaling, acetylcholine transport and serotonergic neurotransmitter pathways. Further, gel-free LC-MS/MS and following PPI network analyses revealed the incidence of actin nucleation at the initial hours immediately after injury. Further by visualizing the PPI network and the interacting players, pink-1, a mitochondrial Serine/threonine-protein kinase which is known to regulate mitochondrial dynamics, was found to be the central player in facilitating the mitochondrial fission and its role was further verified using qPCR analysis and pink-1 transgenic worms. Overall, the study delivers new insights from crucial regulatory pathways and central players involved in wound repair using high throughput proteomic approaches and the mass spectrometry Data (PXD024629/PXD024744) are available via ProteomeXchange. SIGNIFICANCE.
Collapse
Affiliation(s)
- Murugesan Pooranachithra
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India.
| | | | - James Prabhanand Bhaskar
- ITC - Life Sciences and Technology Centre, Peenya Industrial Area, 1(st) Phase, Bangalore 560058, Karnataka, India.
| | - Krishnan Venkateswaran
- ITC - Life Sciences and Technology Centre, Peenya Industrial Area, 1(st) Phase, Bangalore 560058, Karnataka, India.
| | | | - Krishnaswamy Balamurugan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India.
| |
Collapse
|
13
|
Ibrahim A, Soliman M, Kotb S, Ali MM. Evaluation of fish skin as a biological dressing for metacarpal wounds in donkeys. BMC Vet Res 2020; 16:472. [PMID: 33272259 PMCID: PMC7713020 DOI: 10.1186/s12917-020-02693-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background The use of biological dressings has recently emerged in the management of burns and wounds. The aim of the present study was to evaluate the Nile tilapia skin as a biological dressing for full-thickness cutaneous metacarpal wounds in donkeys. The study was conducted on nine clinically healthy donkeys (n = 9). Here, fish skin dressings were obtained from fresh Nile tilapia (Oreochromis niloticus and sterilized by immersion in silver nanoparticles (AgNPs) solution for 5 min, with no change in collagen content. Bilateral, circular full-thickness excisional skin wounds (2 cm in diameter) were created on the dorsal aspect of the mid-metacarpals of each donkey. Wounds on the right metacarpals (treated wounds, n = 9) were dressed with sterile fish skins, while wounds on the left metacarpals (control wounds, n = 9) were dressed with sterile non-adherent dressing pads without any topical applications. Wound dressings were changed weekly. Wounds were evaluated microbiologically, grossly, and histologically on days 7, 14, and 21 post-wound inductions. Results Fish skin-dressed wounds showed a significant (P < 0.0001) reduction in microbial counts (Total viable bacterial count, Staphylococcal count, and Coliform count), a significant (P < 0.0001) decrease in the wound size, and a significant reduction (P < 0.0001) in the epithelial gap compared to the untreated wounds. No frequent dressing changes were needed. Conclusions Fish skin dressing accelerated the wound healing process and efficiently inhibited the local microbial activity and exuberant granulation tissue formation suggesting its reliable and promising application for metacarpal wounds of donkeys.
Collapse
Affiliation(s)
- Ahmed Ibrahim
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Mahmoud Soliman
- Department of Veterinary Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Saber Kotb
- Department of Animal and Poultry Hygiene, and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Magda M Ali
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
14
|
Fedoros EI, Baldueva IA, Perminova IV, Badun GA, Chernysheva MG, Grozdova ID, Melik-Nubarov NS, Danilova AB, Nekhaeva TL, Kuznetsova AI, Emelyanova NV, Ryakhovskiy AA, Pigarev SE, Semenov AL, Tyndyk ML, Gubareva EA, Panchenko AV, Bykov VN, Anisimov VN. Exploring bioactivity potential of polyphenolic water-soluble lignin derivative. ENVIRONMENTAL RESEARCH 2020; 191:110049. [PMID: 32926891 DOI: 10.1016/j.envres.2020.110049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Many natural substances exhibit anti-inflammatory activity and considerable potential in prophylaxis and treatment of allergies. Knowing exact molecular targets, which is required for developing these as medicinal products, is often challenging for multicomponent compositions. In the present study we examined novel polyphenolic substance, a water-soluble fraction of wood lignin (laboratory code BP-Cx-1). In our previous study, a number of polyphenolic components of BP-Cx-1 (flavonoids, sapogenins, phenanthrenes etc.) were identified as the major carriers of biological activity of BP-Cx drug family, and several molecular targets involved in cancer and/or inflammation signaling pathways were proposed based on the results of the in vitro and in silico screening studies. In the present study, half maximal inhibitory concentration (IC50) of BP-Cx-1 was established with a radioligand method and a range of IC50 values between 22.8 and 40.3 μg/ml were obtained for adenosine receptors A1, A2A and prostaglandin receptors EP2, IP (PGI2). IC50 for serotonin 5-HT1 and for glucocorticoid GR receptors were 3.0 μg/ml and 12.6 μg/ml, respectively, both being within the range of BP-Cx-1 concentrations achievable in in vivo models. Further, distribution of [3H] labelled BP-Cx-1 in NIH3T3 murine fibroblasts and MCF7/R carcinoma cells was studied with autoradiography. [3H]-BP-Cx-1 (visualized as silver grains produced by tritium beta particles) was mainly localized along the cell membrane, in the perinuclear region and in the nucleus, suggesting ability of BP-Cx-1 to enter cells and bind to membrane or cytosol receptors. In our experiment, we observed the effect of BP-Cx-1 on maturation of dendritic cells (DCs): downregulation of expression of the lipid-presentation molecule CD1a, co-stimulatory molecules CD80, CD83 and CD 40, decreased production of pro-inflammatory cytokines IL-4 and TNF-α and increased production of anti-inflammatory cytokine IL-10. It is hypothesized that [3H]-BP-Cx-1 detectable in the nucleus is part of the activated GR complex, known to be involved in regulation of transcription of genes responsible for the anti-inflammatory response. Based on IC50, cell distribution data and results of the experiment with DCs it is suggested that the in vivo effects of BP-Cx-1 are mediated via GR and 5-HT1 receptors thus promoting development of tolerogenic effector function in dendritic cells.
Collapse
Affiliation(s)
- E I Fedoros
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia; Nobel LTD, Saint-Petersburg, Russia.
| | - I A Baldueva
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | | | - G A Badun
- Lomonosov Moscow State University, Moscow, Russia
| | | | - I D Grozdova
- Lomonosov Moscow State University, Moscow, Russia
| | | | - A B Danilova
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - T L Nekhaeva
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - A I Kuznetsova
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - N V Emelyanova
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | | | - S E Pigarev
- Nobel LTD, Saint-Petersburg, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - A L Semenov
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - M L Tyndyk
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - E A Gubareva
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - A V Panchenko
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia; FSBSI "Research Institute of Medical Primatology", Sochi, Russian Federation
| | - V N Bykov
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | - V N Anisimov
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| |
Collapse
|
15
|
Guo X, Liu Y, Bera H, Zhang H, Chen Y, Cun D, Foderà V, Yang M. α-Lactalbumin-Based Nanofiber Dressings Improve Burn Wound Healing and Reduce Scarring. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45702-45713. [PMID: 32667794 DOI: 10.1021/acsami.0c05175] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Skin wound especially burn injury is a major threat for public health. One of the pursuits in the current wound healing research is to identify new promising biological materials, which can not only promote tissue repair but also reduce scar formation. In this current study, the potentials of α-lactalbumin (ALA), a tryptophan-rich dietary protein acting as a precursor of neurotransmitter serotonin, to promote the burn wound healing and reduce the scar formation were investigated. The ALA was initially electrospun with polycaprolactone (PCL) to accomplish electrospun nanofibrous mats (ENMs), subsequently assessed for their physicochemical attributes and wound healing efficiency on a burn rat model, and then their healing mechanisms at cellular and molecular levels were explored. The results showed that ALA and PCL were physicochemically compatible in ENMs. The average diameter of various nanofibers was within 183-344 nm. Their wettability and mechanical properties could be readily modulated by adjusting the mass ratios of ALA and PCL from 1/9 to 1/2. The selected ENMs exhibited negligible cytotoxicity and satisfactory adhesion to fibroblasts and promoting the proliferation of the fibroblasts. As compared to pristine PCL based ENMs, the composite scaffolds could accelerate the wound healing process and exhibit effects comparable to a marketed wound dressing over 16 days. Moreover, the ALA/PCL based ENMs could increase the synthesis of type I collagen and decrease the expression of α-smooth muscle actin, conferring that the novel wound dressings could reduce the formation of scars. Collectively, this study demonstrates that the ALA is a promising biological material and could promote the regeneration of burn skins with reduced scar formation, when being loaded on ultrafine fibrous scaffolds, mimicking the structure of the natural extra cellular matrix.
Collapse
Affiliation(s)
- Xiong Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Yunen Liu
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, No. 83 Road, Shenhe District, 110016 Shenyang, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Yang Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
16
|
Soeberdt M, Kilic A, Abels C. Current and emerging treatments targeting the neuroendocrine system for disorders of the skin and its appendages. Exp Dermatol 2020; 29:801-813. [DOI: 10.1111/exd.14145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | - Ana Kilic
- Dr. August Wolff GmbH & Co. KG Arzneimittel Bielefeld Germany
| | - Christoph Abels
- Dr. August Wolff GmbH & Co. KG Arzneimittel Bielefeld Germany
| |
Collapse
|
17
|
Banerjee J, Seetharaman S, Wrice NL, Christy RJ, Natesan S. Delivery of silver sulfadiazine and adipose derived stem cells using fibrin hydrogel improves infected burn wound regeneration. PLoS One 2019; 14:e0217965. [PMID: 31194776 PMCID: PMC6563979 DOI: 10.1371/journal.pone.0217965] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/22/2019] [Indexed: 01/05/2023] Open
Abstract
Infection control is necessary for improved burn wound regeneration. In this study contact burn wounds were induced on the dorsum of the rats and were infected with Pseudomonas aeruginosa (107cfu/ml of saline) and left overnight (12-14 hours) to establish the infection. After 12 hours, the wounds were treated with PEGylated fibrin hydrogel containing 50 mgs of silver sulfadiazine (SSD) loaded chitosan microsphere (SSD-CSM-FPEG). On day 9, SSD-CSM-FPEG treated burn wounds further received adipose derived stem cell (5×104 ASCs cells/ml) embedded in PEGylated fibrin hydrogel. Wounds were assessed for the healing outcomes such as neovascularization, granulation tissue formation, wound closure and collagen maturation. Analysis of bacterial load in the burn wound biopsies, demonstrated that SSD-CSM-FPEG significantly reduced bacterial infection, while overt infection was still observed in the untreated groups on day 14. Sequential treatment of infected wounds with SSD-CSM-FPEG followed by ASC-FPEGs (SSD-CSM-ASC-FPEG) significantly reduced bacterial colonization (9 log reduction) and pro-inflammatory cytokine (TNF-α) expression. A significant increase in neovascularization markers; NG2 and vWF was also observed. Histological analysis indicated the wounds treated with SSD-CSM-ASC-FPEG increased amount of dermal collagen matrix deposition, a thicker granulation tissue on day 21 and more mature collagen on day 28. This work demonstrates that the sequential treatment of infected burn wounds with SSD-CSM-FPEG followed by ASC-FPEG reduces bacterial infection as well as promotes neo-vascularization with improved matrix remodeling.
Collapse
Affiliation(s)
- Jaideep Banerjee
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research, Ft. Sam Houston, TX, United States of America
| | - Shanmuganathan Seetharaman
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research, Ft. Sam Houston, TX, United States of America
| | - Nicole L. Wrice
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research, Ft. Sam Houston, TX, United States of America
| | - Robert J. Christy
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research, Ft. Sam Houston, TX, United States of America
| | - Shanmugasundaram Natesan
- Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research, Ft. Sam Houston, TX, United States of America
- * E-mail:
| |
Collapse
|