1
|
Han CD, Wang CC, Huang L, Chen X. MCFF-MTDDI: multi-channel feature fusion for multi-typed drug-drug interaction prediction. Brief Bioinform 2023; 24:bbad215. [PMID: 37291761 DOI: 10.1093/bib/bbad215] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023] Open
Abstract
Adverse drug-drug interactions (DDIs) have become an increasingly serious problem in the medical and health system. Recently, the effective application of deep learning and biomedical knowledge graphs (KGs) have improved the DDI prediction performance of computational models. However, the problems of feature redundancy and KG noise also arise, bringing new challenges for researchers. To overcome these challenges, we proposed a Multi-Channel Feature Fusion model for multi-typed DDI prediction (MCFF-MTDDI). Specifically, we first extracted drug chemical structure features, drug pairs' extra label features, and KG features of drugs. Then, these different features were effectively fused by a multi-channel feature fusion module. Finally, multi-typed DDIs were predicted through the fully connected neural network. To our knowledge, we are the first to integrate the extra label information into KG-based multi-typed DDI prediction; besides, we innovatively proposed a novel KG feature learning method and a State Encoder to obtain target drug pairs' KG-based features which contained more abundant and more key drug-related KG information with less noise; furthermore, a Gated Recurrent Unit-based multi-channel feature fusion module was proposed in an innovative way to yield more comprehensive feature information about drug pairs, effectively alleviating the problem of feature redundancy. We experimented with four datasets in the multi-class and the multi-label prediction tasks to comprehensively evaluate the performance of MCFF-MTDDI for predicting interactions of known-known drugs, known-new drugs and new-new drugs. In addition, we further conducted ablation studies and case studies. All the results fully demonstrated the effectiveness of MCFF-MTDDI.
Collapse
Affiliation(s)
- Chen-Di Han
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Li Huang
- The Future Laboratory, Tsinghua University, Beijing, 100084, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
- School of Science, Jiangnan University, Wuxi, 214122, China
- Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
2
|
Zhong N, Li D, Wang B, Kovalchuk O, Kovalchuk I. Cannabinol inhibits cell growth and triggers cell cycle arrest and apoptosis in cancer cells. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
3
|
Mazaya M, Kwon YK. In Silico Pleiotropy Analysis in KEGG Signaling Networks Using a Boolean Network Model. Biomolecules 2022; 12:biom12081139. [PMID: 36009032 PMCID: PMC9406064 DOI: 10.3390/biom12081139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pleiotropy, which refers to the ability of different mutations on the same gene to cause different pathological effects in human genetic diseases, is important in understanding system-level biological diseases. Although some biological experiments have been proposed, still little is known about pleiotropy on gene–gene dynamics, since most previous studies have been based on correlation analysis. Therefore, a new perspective is needed to investigate pleiotropy in terms of gene–gene dynamical characteristics. To quantify pleiotropy in terms of network dynamics, we propose a measure called in silico Pleiotropic Scores (sPS), which represents how much a gene is affected against a pair of different types of mutations on a Boolean network model. We found that our model can identify more candidate pleiotropic genes that are not known to be pleiotropic than the experimental database. In addition, we found that many types of functionally important genes tend to have higher sPS values than other genes; in other words, they are more pleiotropic. We investigated the relations of sPS with the structural properties in the signaling network and found that there are highly positive relations to degree, feedback loops, and centrality measures. This implies that the structural characteristics are principles to identify new pleiotropic genes. Finally, we found some biological evidence showing that sPS analysis is relevant to the real pleiotropic data and can be considered a novel candidate for pleiotropic gene research. Taken together, our results can be used to understand the dynamics pleiotropic characteristics in complex biological systems in terms of gene–phenotype relations.
Collapse
Affiliation(s)
- Maulida Mazaya
- Research Center for Computing, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, West Java, Indonesia
| | - Yung-Keun Kwon
- School of IT Convergence, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Korea
- Correspondence:
| |
Collapse
|
4
|
Aghamiri SS, Amin R, Helikar T. Recent applications of quantitative systems pharmacology and machine learning models across diseases. J Pharmacokinet Pharmacodyn 2021; 49:19-37. [PMID: 34671863 PMCID: PMC8528185 DOI: 10.1007/s10928-021-09790-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Quantitative systems pharmacology (QSP) is a quantitative and mechanistic platform describing the phenotypic interaction between drugs, biological networks, and disease conditions to predict optimal therapeutic response. In this meta-analysis study, we review the utility of the QSP platform in drug development and therapeutic strategies based on recent publications (2019-2021). We gathered recent original QSP models and described the diversity of their applications based on therapeutic areas, methodologies, software platforms, and functionalities. The collection and investigation of these publications can assist in providing a repository of recent QSP studies to facilitate the discovery and further reusability of QSP models. Our review shows that the largest number of QSP efforts in recent years is in Immuno-Oncology. We also addressed the benefits of integrative approaches in this field by presenting the applications of Machine Learning methods for drug discovery and QSP models. Based on this meta-analysis, we discuss the advantages and limitations of QSP models and propose fields where the QSP approach constitutes a valuable interface for more investigations to tackle complex diseases and improve drug development.
Collapse
Affiliation(s)
- Sara Sadat Aghamiri
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rada Amin
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
5
|
|
6
|
Ucha M, Roura-Martínez D, Ambrosio E, Higuera-Matas A. The role of the mTOR pathway in models of drug-induced reward and the behavioural constituents of addiction. J Psychopharmacol 2020; 34:1176-1199. [PMID: 32854585 DOI: 10.1177/0269881120944159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exposure to drugs of abuse induces neuroadaptations in critical nodes of the so-called reward systems that are thought to mediate the transition from controlled drug use to the compulsive drug-seeking that characterizes addictive disorders. These neural adaptations are likely to require protein synthesis, which is regulated, among others, by the mechanistic target of the rapamycin kinase (mTOR) signalling cascade. METHODS We have performed a narrative review of the literature available in PubMed about the involvement of the mTOR pathway in drug-reward and addiction-related phenomena. AIMS The aim of this study was to review the underlying architecture of this complex intracellular network and to discuss the alterations of its components that are evident after exposure to drugs of abuse. The aim was also to delineate the effects that manipulations of the mTOR network have on models of drug reward and on paradigms that recapitulate some of the psychological components of addiction. RESULTS There is evidence for the involvement of the mTOR pathway in the acute and rewarding effects of drugs of abuse, especially psychostimulants. However, the data regarding opiates are scarce. There is a need to use sophisticated animal models of addiction to ascertain the real role of the mTOR pathway in this pathology and not just in drug-mediated reward. The involvement of this pathway in behavioural addictions and impulsivity should also be studied in detail in the future. CONCLUSIONS Although there is a plethora of data about the modulation of mTOR by drugs of abuse, the involvement of this signalling pathway in addictive disorders requires further research.
Collapse
Affiliation(s)
- Marcos Ucha
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - David Roura-Martínez
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| | - Alejandro Higuera-Matas
- Department of Psychobiology, National University for Distance Learning (UNED), Madrid, Spain
| |
Collapse
|
7
|
Li H, Pei F, Taylor DL, Bahar I. QuartataWeb: Integrated Chemical-Protein-Pathway Mapping for Polypharmacology and Chemogenomics. Bioinformatics 2020; 36:3935-3937. [PMID: 32221612 PMCID: PMC7320630 DOI: 10.1093/bioinformatics/btaa210] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/04/2020] [Accepted: 03/24/2020] [Indexed: 01/31/2023] Open
Abstract
SUMMARY QuartataWeb is a user-friendly server developed for polypharmacological and chemogenomics analyses. Users can easily obtain information on experimentally verified (known) and computationally predicted (new) interactions between 5494 drugs and 2807 human proteins in DrugBank, and between 315 514 chemicals and 9457 human proteins in the STITCH database. In addition, QuartataWeb links targets to KEGG pathways and GO annotations, completing the bridge from drugs/chemicals to function via protein targets and cellular pathways. It allows users to query a series of chemicals, drug combinations or multiple targets, to enable multi-drug, multi-target, multi-pathway analyses, toward facilitating the design of polypharmacological treatments for complex diseases. AVAILABILITY AND IMPLEMENTATION QuartataWeb is freely accessible at http://quartata.csb.pitt.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hongchun Li
- Department of Computational and Systems Biology School of Medicine
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fen Pei
- Department of Computational and Systems Biology School of Medicine
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - D Lansing Taylor
- Department of Computational and Systems Biology School of Medicine
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology School of Medicine
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
8
|
Domain-mediated interactions for protein subfamily identification. Sci Rep 2020; 10:264. [PMID: 31937869 PMCID: PMC6959277 DOI: 10.1038/s41598-019-57187-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/23/2019] [Indexed: 11/24/2022] Open
Abstract
Within a protein family, proteins with the same domain often exhibit different cellular functions, despite the shared evolutionary history and molecular function of the domain. We hypothesized that domain-mediated interactions (DMIs) may categorize a protein family into subfamilies because the diversified functions of a single domain often depend on interacting partners of domains. Here we systematically identified DMI subfamilies, in which proteins share domains with DMI partners, as well as with various functional and physical interaction networks in individual species. In humans, DMI subfamily members are associated with similar diseases, including cancers, and are frequently co-associated with the same diseases. DMI information relates to the functional and evolutionary subdivisions of human kinases. In yeast, DMI subfamilies contain proteins with similar phenotypic outcomes from specific chemical treatments. Therefore, the systematic investigation here provides insights into the diverse functions of subfamilies derived from a protein family with a link-centric approach and suggests a useful resource for annotating the functions and phenotypic outcomes of proteins.
Collapse
|
9
|
Taylor DL, Gough A, Schurdak ME, Vernetti L, Chennubhotla CS, Lefever D, Pei F, Faeder JR, Lezon TR, Stern AM, Bahar I. Harnessing Human Microphysiology Systems as Key Experimental Models for Quantitative Systems Pharmacology. Handb Exp Pharmacol 2019; 260:327-367. [PMID: 31201557 PMCID: PMC6911651 DOI: 10.1007/164_2019_239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two technologies that have emerged in the last decade offer a new paradigm for modern pharmacology, as well as drug discovery and development. Quantitative systems pharmacology (QSP) is a complementary approach to traditional, target-centric pharmacology and drug discovery and is based on an iterative application of computational and systems biology methods with multiscale experimental methods, both of which include models of ADME-Tox and disease. QSP has emerged as a new approach due to the low efficiency of success in developing therapeutics based on the existing target-centric paradigm. Likewise, human microphysiology systems (MPS) are experimental models complementary to existing animal models and are based on the use of human primary cells, adult stem cells, and/or induced pluripotent stem cells (iPSCs) to mimic human tissues and organ functions/structures involved in disease and ADME-Tox. Human MPS experimental models have been developed to address the relatively low concordance of human disease and ADME-Tox with engineered, experimental animal models of disease. The integration of the QSP paradigm with the use of human MPS has the potential to enhance the process of drug discovery and development.
Collapse
Affiliation(s)
- D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark E Schurdak
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chakra S Chennubhotla
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Lefever
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Fen Pei
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - James R Faeder
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy R Lezon
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivet Bahar
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|