1
|
Johnson EA, Nowar R, Viola KL, Huang W, Zhou S, Bicca MA, Zhu W, Kranz DL, Klein WL, Silverman RB. Inhibition of amyloid beta oligomer accumulation by NU-9: A unifying mechanism for the treatment of neurodegenerative diseases. Proc Natl Acad Sci U S A 2025; 122:e2402117122. [PMID: 40030015 PMCID: PMC11912461 DOI: 10.1073/pnas.2402117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/18/2024] [Indexed: 03/19/2025] Open
Abstract
Protein aggregation is a hallmark of neurodegenerative diseases, which connects these neuropathologies by a common phenotype. Various proteins and peptides form aggregates that are poorly degraded, and their ensuing pathological accumulation underlies these neurodegenerative diseases. Similarities may exist in the mechanisms responsible for the buildup of these aggregates. Therefore, therapeutics designed to treat one neurodegenerative disease may be beneficial to others. In ALS models, the compound NU-9 was previously shown to block neurodegeneration produced by aggregation-inducing mutations of SOD-1 and TDP-43 [B. Genç et al., Clin. Transl. Med. 11, e336 (2021)]. Here, we report that NU-9 also prevents the accumulation of amyloid beta oligomers (AβOs), small peptide aggregates that are instigators of Alzheimer's disease neurodegeneration [M. Tolar et al., Int. J. Mol. Sci. 22, 6355 (2021)]. AβO buildup was measured by immunofluorescence imaging of cultured hippocampal neurons exposed to exogenous monomeric Aβ. In this model, AβO buildup occurs via cathepsin L- and dynamin-dependent trafficking. This is prevented by NU-9 through a cellular mechanism that is cathepsin B- and lysosome-dependent, suggesting that NU-9 enhances the ability of endolysosomal trafficking to protect against AβO buildup. This possibility is strongly supported by a quantitative assay for autophagosomes that shows robust stimulation by NU-9. These results contribute additional understanding to the mechanisms of protein aggregation and suggest that multiple neurodegenerative diseases might be treatable by targeting common pathogenic mechanisms responsible for protein aggregation.
Collapse
Affiliation(s)
- Elizabeth A. Johnson
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| | - Raghad Nowar
- Department of Neurobiology, Northwestern University, Evanston, IL60208
| | - Kirsten L. Viola
- Department of Neurobiology, Northwestern University, Evanston, IL60208
| | - Weijian Huang
- The Master of Biotechnology Program, McCormick School of Engineering, Northwestern University, Evanston, IL60208
| | - Sihang Zhou
- The Master of Biotechnology Program, McCormick School of Engineering, Northwestern University, Evanston, IL60208
| | - Maíra A. Bicca
- Department of Neurobiology, Northwestern University, Evanston, IL60208
| | - Wei Zhu
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| | - Daniel L. Kranz
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| | - William L. Klein
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
- Department of Neurobiology, Northwestern University, Evanston, IL60208
- Department of Neurology, Northwestern University, Chicago, IL60611
| | - Richard B. Silverman
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- Department of Pharmacology, Northwestern University, Chicago, IL60611
| |
Collapse
|
2
|
Heller LI, Lowe AS, Del Rosario Hernández T, Gore SV, Chatterjee M, Creton R. Target the Heart: a new axis of Alzheimer's disease prevention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.634057. [PMID: 39975163 PMCID: PMC11838187 DOI: 10.1101/2025.01.27.634057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cyclosporine A and other calcineurin inhibitors have been identified as prospective treatments for preventing Alzheimer's disease. Utilizing a neural network model, Z-LaP Tracker, we previously found that calcineurin inhibitors elicit a unique behavioral profile in zebrafish larvae characterized by increased activity, acoustic hyperexcitability, and reduced visually guided behaviors. Screening a large library of FDA-approved drugs using Z-LaP Tracker revealed a cluster of 65 drugs demonstrating a cyclosporine A-like behavioral profile. 14 of these drugs were heart medications, including angiotensin receptor blockers, beta-blockers, alpha-adrenergic receptor antagonists, and a statin. This suggests some heart medications may be effective in preventing or ameliorating Alzheimer's disease pathology. Other studies have shown that many of these 14 drugs directly or indirectly inhibit the calcineurin-NFAT pathway, alike cyclosporine A. Dual administration of the heart medications with cyclosporine A in Z-LaP Tracker revealed synergistic effects: lower doses of each heart medication could be delivered in conjunction with a lower dose of cyclosporine A to evoke a similar or larger behavioral effect than higher doses of each drug independently. This indicates that co-administering a low dose of cyclosporine A with select cardiac drugs could be a potentially effective treatment strategy for Alzheimer's disease and cardiovascular dysfunction, while mitigating side effects associated with higher doses of cyclosporine A. Given that heart disease precedes Alzheimer's disease in many patients, physicians may be able to create a treatment regimen that simultaneously addresses both conditions. Our results suggest that cyclosporine A combined with simvastatin, irbesartan, cilostazol, doxazosin, or nebivolol are the most promising candidates for future exploration.
Collapse
Affiliation(s)
- Lawrence I Heller
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Allison S Lowe
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Thaís Del Rosario Hernández
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Mallika Chatterjee
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, 201303, India
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
3
|
Gad ES, Aldossary SA, El-Ansary MR, Abd El-Galil MM, Abd-El-Hamid AH, El-Ansary AR, Hassan NF. Cilostazol counteracts mitochondrial dysfunction in hepatic encephalopathy rat model: Insights into the role of cAMP/AMPK/SIRT1/ PINK-1/parkin hub and p-CREB /BDNF/ TrkB neuroprotective trajectory. Eur J Pharmacol 2025; 987:177194. [PMID: 39667427 DOI: 10.1016/j.ejphar.2024.177194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/17/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
A devasting stage of chronic hepatic dysfunction is strictly correlated with neurological impairment, signifying hepatic encephalopathy (HE). HE is a multifactorial condition; therefore, hyperammonemia, oxidative stress, neuroinflammation, and mitochondrial dysfunction interplay in HE's progressive development. Cilostazol (Cilo) has shown promising neuroprotective and hepatoprotective effectiveness in different neuronal and hepatic disorders; however, its efficiency against HE hasn't yet been explored. This study aimed to investigate the protective role of Cilo against thioacetamide (TAA)-induced HE in rats targeting mitochondrial dysfunction via modulation of Adenosine monophosphate-activated protein kinase (AMPK)/Silent information regulator 1 (SIRT1) dependent pathways. Rats were allocated into three groups: the normal control group, the TAA group received (100 mg/kg, three times per week, for six weeks) to induce HE, and the Cilo group received (Cilo 100 mg/kg/day for six weeks, oral gavage) concurrently with TAA. Cilo counteracted HE indicated in the enhancement of cognitive impairment and the motor performance of rats (P < 0.0001), modulation AMPK/SIRT1signaling pathway causing reduction of NF-kB p65 (P < 0.0001) evoked inflammation along with histopathological alterations and glial fibrillary acidic protein (GFAP) immunoreactivity (P < 0.0001), restoration nuclear factor E2-related factor 2 (Nrf2) (P < 0.0001) antioxidant effects, reduction of Bax and elevation of Bcl2 immunoreactivity (P < 0.0001) in addition to boosting mitochondrial biogenesis by upregulation of PTEN-induced kinase-1 (PINK-1)/Parkin (P < 0.0001)and restoration of Brain-derived neurotrophic factor (BDNF) (P = 0.0002)/tropomyosin-related kinase B (TrkB) (P < 0.0001)/cAMP response element-binding (CREB) (P < 0.0001) neuroprotective axis. Collectively, Cilo activates the SIRT1 trajectory to abridge mitochondrial dysfunction invigorated in the HE rat model via restoration of mitochondrial hemostasis.
Collapse
Affiliation(s)
- Enas S Gad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, AL Ahsa, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, Egypt
| | - Sara A Aldossary
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, AL Ahsa, Saudi Arabia
| | - Mona R El-Ansary
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mona M Abd El-Galil
- Department of Histology and Cell Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Asmaa Hassan Abd-El-Hamid
- Department of Histology and Cell Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Amira R El-Ansary
- Department of Internal Medicine, Faculty of Medicine, Misr University for Science and Technology, Cairo, Egypt
| | - Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
4
|
Desouky MA, Michel HE, Elsherbiny DA, George MY. Recent pharmacological insights on abating toxic protein species burden in neurological disorders: Emphasis on 26S proteasome activation. Life Sci 2024; 359:123206. [PMID: 39489397 DOI: 10.1016/j.lfs.2024.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/30/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Protein homeostasis (proteostasis) refers to the plethora of mechanisms that safeguard the proper folding of the newly synthesized proteins. It entails various intricately regulated cues that demolish the toxic protein species to prevent their aggregation. The ubiquitin-proteasome system (UPS) is recognized as a salient protein degradation system, with a substantial role in maintaining proteostasis. However, under certain circumstances the protein degradation capacity of the UPS is overwhelmed, leading to the accumulation of misfolded proteins. Several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington disease, and amyotrophic lateral sclerosis are characterized with the presence of protein aggregates and proteinopathy. Accordingly, enhancing the 26S proteasome degradation activity might delineate a pioneering approach in targeting various proteotoxic disorders. Regrettably, the exact molecular approaches that enhance the proteasomal activity are still not fully understood. Therefore, this review aimed to underscore several signaling cascades that might restore the degradation capacity of this molecular machine. In this review, we discuss the different molecular components of the UPS and how 26S proteasomes are deleteriously affected in many neurodegenerative diseases. Moreover, we summarize different signaling pathways that can be utilized to renovate the 26S proteasome functional capacity, alongside currently known druggable targets in this circuit and various classes of proteasome activators.
Collapse
Affiliation(s)
- Mahmoud A Desouky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| |
Collapse
|
5
|
Shan X, Lu Y, Luo Z, Zhao X, Pang M, Yin H, Guo X, Zhou H, Zhang J, Huang J, Shi Y, Lou J, Luo L, You J. A Long-Acting Lyotropic Liquid Crystalline Implant Promotes the Drainage of Macromolecules by Brain-Related Lymphatic System in Treating Aged Alzheimer's Disease. ACS NANO 2024; 18:9688-9703. [PMID: 38517764 DOI: 10.1021/acsnano.4c01206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Numerous evidence has demonstrated that the brain is not an immune-privileged organ but possesses a whole set of lymphatic transport system, which facilitates the drainage of harmful waste from brains to maintain cerebral homeostasis. However, as individuals age, the shrinkage and dysfunction of meningeal and deep cervical lymphatic networks lead to reduced waste outflow and elevated neurotoxic molecules deposition, further inducing aging-associated cognitive decline, which act as one of the pathological mechanisms of Alzheimer's disease. Consequently, recovering the function of meningeal and deep cervical lymph node (dCLNs) networks (as an important part of the brain waste removal system (BWRS)) of aged brains might be a feasible strategy. Herein we showed that the drug brain-entering efficiency was highly related to administration routes (oral, subcutaneous, or dCLN delivery). Besides, by injecting a long-acting lyotropic liquid crystalline implant encapsulating cilostazol (an FDA-approved selective PDE-3 inhibitor) and donepezil hydrochloride (a commonly used symptomatic relief agent to inhibit acetylcholinesterase for Alzheimer's disease) near the deep cervical lymph nodes of aged mice (about 20 months), an increase of lymphatic vessel coverage in the nodes and meninges was observed, along with accelerated drainage of macromolecules from brains. Compared with daily oral delivery of cilostazol and donepezil hydrochloride, a single administered dual drugs-loaded long-acting implants releasing for more than one month not only elevated drug concentrations in brains, improved the clearing efficiency of brain macromolecules, reduced Aβ accumulation, enhanced cognitive functions of the aged mice, but improved patient compliance as well, which provided a clinically accessible therapeutic strategy toward aged Alzheimer's diseases.
Collapse
Affiliation(s)
- Xinyu Shan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xiaoqi Zhao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Mei Pang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Hang Yin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Jinfang Lou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang 321299, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310006, P. R. China
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, P. R. China
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang 321299, P. R. China
| |
Collapse
|
6
|
Choi SA, Jee HJ, Bormate KJ, Kim Y, Jung YS. Sex Differences in the Preventive Effect of Cardiovascular and Metabolic Therapeutics on Dementia. Biomol Ther (Seoul) 2023; 31:583-598. [PMID: 37899743 PMCID: PMC10616511 DOI: 10.4062/biomolther.2023.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 10/31/2023] Open
Abstract
Dementia is a clinical syndrome characterized by progressive impairment of cognitive and functional abilities. As currently applied treatments for dementia can only delay the progression of dementia and cannot fundamentally cure it, much attention is being paid to reducing its incidence by preventing the associated risk factors. Cardiovascular and metabolic diseases are well-known risk factors for dementia, and many studies have attempted to prevent dementia by treating these risk factors. Growing evidence suggests that sex-based factors may play an important role in the pathogenesis of dementia. Therefore, a deeper understanding of the differences in the effects of drugs based on sex may help improve their effectiveness. In this study, we reviewed sex differences in the impact of therapeutics targeting risk factors for dementia, such as cardiovascular and metabolic diseases, to prevent the incidence and/or progression of dementia.
Collapse
Affiliation(s)
- Sun Ah Choi
- Graduate School of Global Pharmaceutical Industry and Clinical Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hye Jin Jee
- AI-Super convergence KIURI Translational Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | | | - Yeonjae Kim
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Yi-Sook Jung
- Graduate School of Global Pharmaceutical Industry and Clinical Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
7
|
Beura SK, Dhapola R, Panigrahi AR, Yadav P, Kumar R, Reddy DH, Singh SK. Antiplatelet drugs: Potential therapeutic options for the management of neurodegenerative diseases. Med Res Rev 2023; 43:1835-1877. [PMID: 37132460 DOI: 10.1002/med.21965] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
The blood platelet plays an important role but often remains under-recognized in several vascular complications and associated diseases. Surprisingly, platelet hyperactivity and hyperaggregability have often been considered the critical risk factors for developing vascular dysfunctions in several neurodegenerative diseases (NDDs) like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In addition, platelet structural and functional impairments promote prothrombotic and proinflammatory environment that can aggravate the progression of several NDDs. These findings provide the rationale for using antiplatelet agents not only to prevent morbidity but also to reduce mortality caused by NDDs. Therefore, we thoroughly review the evidence supporting the potential pleiotropic effects of several novel classes of synthetic antiplatelet drugs, that is, cyclooxygenase inhibitors, adenosine diphosphate receptor antagonists, protease-activated receptor blockers, and glycoprotein IIb/IIIa receptor inhibitors in NDDs. Apart from this, the review also emphasizes the recent developments of selected natural antiplatelet phytochemicals belonging to key classes of plant-based bioactive compounds, including polyphenols, alkaloids, terpenoids, and flavonoids as potential therapeutic candidates in NDDs. We believe that the broad analysis of contemporary strategies and specific approaches for plausible therapeutic treatment for NDDs presented in this review could be helpful for further successful research in this area.
Collapse
Affiliation(s)
- Samir K Beura
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Abhishek R Panigrahi
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Pooja Yadav
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Reetesh Kumar
- Department of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Dibbanti H Reddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Sunil K Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| |
Collapse
|
8
|
Chou ML, Babamale AO, Walker TL, Cognasse F, Blum D, Burnouf T. Blood-brain crosstalk: the roles of neutrophils, platelets, and neutrophil extracellular traps in neuropathologies. Trends Neurosci 2023; 46:764-779. [PMID: 37500363 DOI: 10.1016/j.tins.2023.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
Systemic inflammation, neurovascular dysfunction, and coagulopathy often occur concurrently in neuropathologies. Neutrophils and platelets have crucial synergistic roles in thromboinflammation and are increasingly suspected as effector cells contributing to the pathogenesis of neuroinflammatory diseases. In this review, we summarize the roles of platelet-neutrophil interactions in triggering complex pathophysiological events affecting the brain that may lead to the disruption of brain barriers, infiltration of toxic factors into the parenchyma, and amplification of neuroinflammation through the formation of neutrophil extracellular traps (NETs). We highlight the clinical significance of thromboinflammation in neurological disorders and examine the contributions of damage-associated molecular patterns (DAMPs) derived from platelets and neutrophils. These DAMPs originate from both infectious and non-infectious risk factors and contribute to the activation of inflammasomes during brain disorders. Finally, we identify knowledge gaps in the molecular mechanisms underlying neurodegenerative disease pathogenesis and emphasize the potential of interventions targeting platelets and neutrophils to treat neuroinflammatory diseases.
Collapse
Affiliation(s)
- Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 23561, Taiwan; INSERM UMRS 938, Centre de Recherche Saint-Antoine, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris 75012, France
| | - Abdulkareem Olarewaju Babamale
- Taiwan International Graduate Program in Molecular Medicine, Academia Sinica, Taipei 11266, Taiwan; Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin 240003, Nigeria
| | - Tara L Walker
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, 42023 Saint-Étienne, France; University Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023 Saint-Etienne, France
| | - David Blum
- University of Lille, INSERM, CHU Lille, UMR-S1172 LilNCog, Lille Neuroscience and Cognition, F-59000 Lille, France; Alzheimer & Tauopathies, LabEx DISTALZ, LiCEND, Lille F-59000, France; NeuroTMULille International Laboratory, University of Lille, F-59000 Lille, France
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 23561, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City 23561, Taiwan; NeuroTMULille International Laboratory, Taipei Medical University, Taipei 10031, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei 11031, Taiwan; Brain and Consciousness Research Centre, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| |
Collapse
|
9
|
Ren Y, Qu S. Constituent isoflavones of Puerariae radix as a potential neuroprotector in cognitive impairment: Evidence from preclinical studies. Ageing Res Rev 2023; 90:102040. [PMID: 37619620 DOI: 10.1016/j.arr.2023.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
With the increasing aging population worldwide, the incidence of senile cognitive impairment (CI) is increasing, posing a serious threat to the health of elderly persons. Despite developing new drugs aimed at improving CI, progress in this regard has been insufficient. Natural preparations derived from plants have become an unparalleled resource for developing new drugs. Puerariae radix (PR) has a long history as Chinese herbal medicine. PR is rich in various chemical components such as isoflavones, triterpenes, and saponins. The isoflavones (puerarin, daidzein, formononetin, and genistein) exhibit potential therapeutic effects on CI through multiple mechanisms. Relevant literature was organized from major scientific databases such as PubMed, Elsevier, SpringerLink, ScienceDirect, and Web of Science. Using "Puerariae radix," "Pueraria lobata," "isoflavones," "puerarin," "antioxidant," "daidzein," "formononetin," "genistein," "Alzheimer"s disease," and "vascular cognitive impairment" as keywords, the relevant literature was extracted from the databases mentioned above. We found that isoflavones from PR have neuroprotective effects on multiple models of CI via multiple targets and mechanisms. These isoflavones prevent Aβ aggregation, inhibit tau hyperphosphorylation, increase cholinergic neurotransmitter levels, reduce neuroinflammation and oxidative stress, improve synaptic plasticity, promote nerve regeneration, and prevent apoptosis. PR has been used as traditional Chinese herbal medicine for a long time, and its constituent isoflavones exert significant therapeutic effects on CI through various neuroprotective mechanisms. This review will contribute to the future development of isoflavones present in PR as novel drug candidates for the clinical treatment of CI.
Collapse
Affiliation(s)
- Yaoyao Ren
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36 Sanhao St, Shenyang 110004, PR China.
| |
Collapse
|
10
|
Ebrahimi P, Seyedmirzaei H, Moradi K, Bagheri S, Moeini M, Mohammadi MR, Akhondzadeh S. Cilostazol as adjunctive therapy in treatment of children with autism spectrum disorders: a double-blind and placebo-controlled randomized trial. Int Clin Psychopharmacol 2023; 38:89-95. [PMID: 36165508 DOI: 10.1097/yic.0000000000000431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We aimed to evaluate cilostazol therapeutic effects on aberrant behaviors of autism spectrum disorder (ASD) children and its safety profile in a double-blind, randomized clinical trial. Sixty-six children with confirmed ASD were allocated to receive either daily 50-mg cilostazol (increased to 100 mg/day after 2 weeks) or matched placebo in addition to risperidone. The Aberrant Behavior Checklist-Community Edition (ABC-C) scale and a checklist of probable adverse effects were used to assess the behavioral outcomes and safety profile at weeks 0, 5, and 10 of the study. Sixty-one participants, with comparable baseline characteristics, completed the trial. Unlike other ABC-C subscales, repeated-measures analysis showed significant effect for time × treatment interaction in the hyperactivity subscale ( P = 0.047; partial eta squared = 0.06). We used the median value for the baseline score hyperactivity subscale [median (interquartile range) = 31 (24-37)] to stratify participants to higher hyperactivity and lower hyperactivity subgroups and found that only participants with higher hyperactivity benefit from cilostazol adjunctive therapy ( P = 0.028; partial eta squared = 0.14). Cilostazol could be considered as a safe agent with beneficial effects on hyperactivity in children with ASD and higher levels of hyperactivity.
Collapse
Affiliation(s)
- Parnia Ebrahimi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences
| | - Homa Seyedmirzaei
- Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences
| | - Kamyar Moradi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences
| | - Sayna Bagheri
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences
| | - Mahdi Moeini
- Department of Psychology, Faculty of Psychology and Education, Allameh Tabatabaei University, Tehran, Iran
| | - Mohammad-Reza Mohammadi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences
| |
Collapse
|
11
|
Chien CF, Huang LC, Li KY, Yang YH. Cognitive effects of cilostazol in Alzheimer's dementia patients with peripheral arterial occlusive disease: A case-control study. Geriatr Gerontol Int 2023; 23:194-199. [PMID: 36682741 DOI: 10.1111/ggi.14542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/29/2022] [Accepted: 12/27/2022] [Indexed: 01/24/2023]
Abstract
AIM Alzheimer's dementia (AD) is a slowly progressing neurodegenerative disease, characterized by beta-amyloid deposition and neurofibrillary tangles. Peripheral atherosclerosis may deteriorate these processes via endothelial cell dysfunction and microvascular impairment. Cilostazol - a phosphodiesterase 3 inhibitor - is a standard treatment for peripheral arterial occlusive disease and a potential treatment for preserving cognitive function in AD patients. We aimed to determine whether cilostazol is beneficial in AD patients with peripheral arterial occlusive disease by evaluating Cognitive Abilities Screening Instrument (CASI) domains. METHODS We conducted a retrospective case-control study of 62 AD patients in Taiwan. Thirty-one patients had peripheral arterial occlusive disease and were receiving cilostazol plus acetylcholinesterase inhibitors (AchEIs) or N-methyl d-aspartate antagonists, whereas 31 others were receiving AchEIs. Therapeutic responses were measured using neuropsychological assessments. The CASI was administered at baseline and 12 months later; different domains were analyzed between the groups using univariate and multivariate analyses. RESULTS Age, sex, education duration, ApoE ε4 gene status, and initial Mini-Mental State Examination scores were not different between the two groups. Except for fluency, no CASI domains showed a statistical difference between the groups. A significant difference was observed in category fluency (P = 0.010). In the logistic regression analysis, after adjusting for covariate effects, category fluency still showed a significant difference between the groups (P = 0.013). CONCLUSIONS In AD patients with peripheral arterial occlusive disease who have received Food and Drug Administration-approved pharmacotherapy, cilostazol, as an antiplatelet, may help to preserve general cognitive function, with significant preservation in category fluency. Geriatr Gerontol Int 2023; 23: 194-199.
Collapse
Affiliation(s)
- Ching-Fang Chien
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ling-Chun Huang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuan-Ying Li
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yuan-Han Yang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Beura SK, Dhapola R, Panigrahi AR, Yadav P, Reddy DH, Singh SK. Redefining oxidative stress in Alzheimer's disease: Targeting platelet reactive oxygen species for novel therapeutic options. Life Sci 2022; 306:120855. [DOI: 10.1016/j.lfs.2022.120855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
|
13
|
Jyoti Dutta B, Singh S, Seksaria S, Das Gupta G, Bodakhe SH, Singh A. Potential role of IP3/Ca 2+ signaling and phosphodiesterases: Relevance to neurodegeneration in Alzheimer's disease and possible therapeutic strategies. Biochem Pharmacol 2022; 201:115071. [PMID: 35525328 DOI: 10.1016/j.bcp.2022.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
Despite large investments by industry and governments, no disease-modifying medications for the treatment of patients with Alzheimer's disease (AD) have been found. The failures of various clinical trials indicate the need for a more in-depth understanding of the pathophysiology of AD and for innovative therapeutic strategies for its treatment. Here, we review the rational for targeting IP3 signaling, cytosolic calcium dysregulation, phosphodiesterases (PDEs), and secondary messengers like cGMP and cAMP, as well as their correlations with the pathophysiology of AD. Various drugs targeting these signaling cascades are still in pre-clinical and clinical trials which support the ideas presented in this article. Further, we describe different molecular mechanisms and medications currently being used in various pre-clinical and clinical trials involving IP3/Ca+2 signaling. We also highlight various isoforms, as well as the functions and pharmacology of the PDEs broadly expressed in different parts of the brain and attempt to unravel the potential benefits of PDE inhibitors for use as novel medications to alleviate the pathogenesis of AD.
Collapse
Affiliation(s)
- Bhaskar Jyoti Dutta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur - 495009, Chhattisgarh, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India.
| |
Collapse
|
14
|
Gomaa AA, Farghaly HS, Ahmed AM, El-Mokhtar MA, Hemida FK. Advancing combination treatment with cilostazol and caffeine for Alzheimer's disease in high fat-high fructose-STZ induced model of amnesia. Eur J Pharmacol 2022; 921:174873. [DOI: 10.1016/j.ejphar.2022.174873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
|
15
|
Pinzi L, Tinivella A, Gagliardelli L, Beneventano D, Rastelli G. LigAdvisor: a versatile and user-friendly web-platform for drug design. Nucleic Acids Res 2021; 49:W326-W335. [PMID: 34023895 PMCID: PMC8262749 DOI: 10.1093/nar/gkab385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Although several tools facilitating in silico drug design are available, their results are usually difficult to integrate with publicly available information or require further processing to be fully exploited. The rational design of multi-target ligands (polypharmacology) and the repositioning of known drugs towards unmet therapeutic needs (drug repurposing) have raised increasing attention in drug discovery, although they usually require careful planning of tailored drug design strategies. Computational tools and data-driven approaches can help to reveal novel valuable opportunities in these contexts, as they enable to efficiently mine publicly available chemical, biological, clinical, and disease-related data. Based on these premises, we developed LigAdvisor, a data-driven webserver which integrates information reported in DrugBank, Protein Data Bank, UniProt, Clinical Trials and Therapeutic Target Database into an intuitive platform, to facilitate drug discovery tasks as drug repurposing, polypharmacology, target fishing and profiling. As designed, LigAdvisor enables easy integration of similarity estimation results with clinical data, thereby allowing a more efficient exploitation of information in different drug discovery contexts. Users can also develop customizable drug design tasks on their own molecules, by means of ligand- and target-based search modes, and download their results. LigAdvisor is publicly available at https://ligadvisor.unimore.it/.
Collapse
Affiliation(s)
- Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Annachiara Tinivella
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy.,Clinical and Experimental Medicine, PhD Program, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Luca Gagliardelli
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Domenico Beneventano
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| |
Collapse
|
16
|
Liu Z, Li H, Pan S. Discovery and Validation of Key Biomarkers Based on Immune Infiltrates in Alzheimer's Disease. Front Genet 2021; 12:658323. [PMID: 34276768 PMCID: PMC8281057 DOI: 10.3389/fgene.2021.658323] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND As the most common neurodegenerative disease, Alzheimer's disease (AD) leads to progressive loss of cognition and memory. Presently, the underlying pathogenic genes of AD patients remain elusive, and effective disease-modifying therapy is not available. This study explored novel biomarkers that can affect diagnosis and treatment in AD based on immune infiltration. METHODS The gene expression profiles of 139 AD cases and 134 normal controls were obtained from the NCBI GEO public database. We applied the computational method CIBERSORT to bulk gene expression profiles of AD to quantify 22 subsets of immune cells. Besides, based on the use of the Least Absolute Shrinkage Selection Operator (LASSO), this study also applied SVM-RFE analysis to screen key genes. GO-based semantic similarity and logistic regression model analyses were applied to explore hub genes further. RESULTS There was a remarkable significance in the infiltration of immune cells between the subgroups. The proportions for monocytes, M0 macrophages, and dendritic cells in the AD group were significantly higher than those in the normal group, while the proportion of some cells was lower than that of the normal group, such as NK cell resting, T-cell CD4 naive, T-cell CD4 memory activation, and eosinophils. Additionally, seven genes (ABCA2, CREBRF, CD72, CETN2, KCNG1, NDUFA2, and RPL36AL) were identified as hub genes. Then we performed the analysis of immune factor correlation, gene set enrichment analysis (GSEA), and GO based on seven hub genes. The AUC of ROC prediction model in test and validation sets were 0.845 and 0.839, respectively. Eventually, the mRNA expression analysis of ABCA2, NDUFA2, CREBRF, and CD72 revealed significant differences among the seven hub genes and then was confirmed by RT-PCR. CONCLUSION A model based on immune cell infiltration might be used to forecast AD patients' diagnosis, and it provided a new perspective for AD treatment targets.
Collapse
Affiliation(s)
- Zhuohang Liu
- The Fifth Clinical Medical College of Anhui Medical University, Beijing, China
- Department of Hyperbaric Oxygen, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hang Li
- Department of Hyperbaric Oxygen, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuyi Pan
- The Fifth Clinical Medical College of Anhui Medical University, Beijing, China
- Department of Hyperbaric Oxygen, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Memory Enhancers for Alzheimer's Dementia: Focus on cGMP. Pharmaceuticals (Basel) 2021; 14:ph14010061. [PMID: 33451088 PMCID: PMC7828493 DOI: 10.3390/ph14010061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Cyclic guanosine-3',5'-monophosphate, better known as cyclic-GMP or cGMP, is a classical second messenger involved in a variety of intracellular pathways ultimately controlling different physiological functions. The family of guanylyl cyclases that includes soluble and particulate enzymes, each of which comprises several isoforms with different mechanisms of activation, synthesizes cGMP. cGMP signaling is mainly executed by the activation of protein kinase G and cyclic nucleotide gated channels, whereas it is terminated by its hydrolysis to GMP operated by both specific and dual-substrate phosphodiesterases. In the central nervous system, cGMP has attracted the attention of neuroscientists especially for its key role in the synaptic plasticity phenomenon of long-term potentiation that is instrumental to memory formation and consolidation, thus setting off a "gold rush" for new drugs that could be effective for the treatment of cognitive deficits. In this article, we summarize the state of the art on the neurochemistry of the cGMP system and then review the pre-clinical and clinical evidence on the use of cGMP enhancers in Alzheimer's disease (AD) therapy. Although preclinical data demonstrates the beneficial effects of cGMP on cognitive deficits in AD animal models, the results of the clinical studies carried out to date are not conclusive. More trials with a dose-finding design on selected AD patient's cohorts, possibly investigating also combination therapies, are still needed to evaluate the clinical potential of cGMP enhancers.
Collapse
|
18
|
Kreiser RP, Wright AK, Block NR, Hollows JE, Nguyen LT, LeForte K, Mannini B, Vendruscolo M, Limbocker R. Therapeutic Strategies to Reduce the Toxicity of Misfolded Protein Oligomers. Int J Mol Sci 2020; 21:ijms21228651. [PMID: 33212787 PMCID: PMC7696907 DOI: 10.3390/ijms21228651] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The aberrant aggregation of proteins is implicated in the onset and pathogenesis of a wide range of neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Mounting evidence indicates that misfolded protein oligomers produced as intermediates in the aggregation process are potent neurotoxic agents in these diseases. Because of the transient and heterogeneous nature of these elusive aggregates, however, it has proven challenging to develop therapeutics that can effectively target them. Here, we review approaches aimed at reducing oligomer toxicity, including (1) modulating the oligomer populations (e.g., by altering the kinetics of aggregation by inhibiting, enhancing, or redirecting the process), (2) modulating the oligomer properties (e.g., through the size–hydrophobicity–toxicity relationship), (3) modulating the oligomer interactions (e.g., by protecting cell membranes by displacing oligomers), and (4) reducing oligomer toxicity by potentiating the protein homeostasis system. We analyze examples of these complementary approaches, which may lead to the development of compounds capable of preventing or treating neurodegenerative disorders associated with protein aggregation.
Collapse
Affiliation(s)
- Ryan P. Kreiser
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Aidan K. Wright
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Natalie R. Block
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Jared E. Hollows
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Lam T. Nguyen
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Kathleen LeForte
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK;
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK;
- Correspondence: (M.V.); (R.L.)
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
- Correspondence: (M.V.); (R.L.)
| |
Collapse
|
19
|
Bauzon J, Lee G, Cummings J. Repurposed agents in the Alzheimer's disease drug development pipeline. Alzheimers Res Ther 2020; 12:98. [PMID: 32807237 PMCID: PMC7433208 DOI: 10.1186/s13195-020-00662-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/29/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Treatments are needed to address the growing prevalence of Alzheimer's disease (AD). Clinical trials have failed to produce any AD drugs for Food and Drug Administration (FDA) approval since 2003, and the pharmaceutical development process is both time-consuming and costly. Drug repurposing provides an opportunity to accelerate this process by investigating the AD-related effects of agents approved for other indications. These drugs have known safety profiles, pharmacokinetic characterization, formulations, doses, and manufacturing processes. METHODS We assessed repurposed AD therapies represented in Phase I, Phase II, and Phase III of the current AD pipeline as registered on ClinicalTrials.gov as of February 27, 2020. RESULTS We identified 53 clinical trials involving 58 FDA-approved agents. Seventy-eight percent of the agents in trials had putative disease-modifying mechanisms of action. Of the repurposed drugs in the pipeline 20% are hematologic-oncologic agents, 18% are drugs derived from cardiovascular indications, 14% are agents with psychiatric uses, 12% are drug used to treat diabetes, 10% are neurologic agents, and the remaining 26% of drugs fall under other conditions. Intellectual property strategies utilized in these programs included using the same drug but altering doses, routes of administration, or formulations. Most repurposing trials were supported by Academic Medical Centers and were not funded through the biopharmaceutical industry. We compared our results to a European trial registry and found results similar to those derived from ClinicalTrials.gov. CONCLUSIONS Drug repurposing is a common approach to AD drug development and represents 39% of trials in the current AD pipeline. Therapies from many disease areas provide agents potentially useful in AD. Most of the repurposed agents are generic and a variety of intellectual property strategies have been adopted to enhance their economic value.
Collapse
Affiliation(s)
- Justin Bauzon
- School of Medicine, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, 89154, USA
| | - Garam Lee
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, 89106, USA
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, 89106, USA.
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, 89154, USA.
| |
Collapse
|
20
|
Sanders O, Rajagopal L. Phosphodiesterase Inhibitors for Alzheimer's Disease: A Systematic Review of Clinical Trials and Epidemiology with a Mechanistic Rationale. J Alzheimers Dis Rep 2020; 4:185-215. [PMID: 32715279 PMCID: PMC7369141 DOI: 10.3233/adr-200191] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Preclinical studies, clinical trials, and reviews suggest increasing 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) with phosphodiesterase inhibitors is disease-modifying in Alzheimer's disease (AD). cAMP/protein kinase A (PKA) and cGMP/protein kinase G (PKG) signaling are disrupted in AD. cAMP/PKA and cGMP/PKG activate cAMP response element binding protein (CREB). CREB binds mitochondrial and nuclear DNA, inducing synaptogenesis, memory, and neuronal survival gene (e.g., brain-derived neurotrophic factor) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α). cAMP/PKA and cGMP/PKG activate Sirtuin-1, which activates PGC1α. PGC1α induces mitochondrial biogenesis and antioxidant genes (e.g.,Nrf2) and represses BACE1. cAMP and cGMP inhibit BACE1-inducing NFκB and tau-phosphorylating GSK3β. OBJECTIVE AND METHODS We review efficacy-testing clinical trials, epidemiology, and meta-analyses to critically investigate whether phosphodiesteraseinhibitors prevent or treat AD. RESULTS Caffeine and cilostazol may lower AD risk. Denbufylline and sildenafil clinical trials are promising but preliminary and inconclusive. PF-04447943 and BI 409,306 are ineffective. Vinpocetine, cilostazol, and nicergoline trials are mixed. Deprenyl/selegiline trials show only short-term benefits. Broad-spectrum phosphodiesterase inhibitor propentofylline has been shown in five phase III trials to improve cognition, dementia severity, activities of daily living, and global assessment in mild-to-moderate AD patients on multiple scales, including the ADAS-Cogand the CIBIC-Plus in an 18-month phase III clinical trial. However, two books claimed based on a MedScape article an 18-month phase III trial failed, so propentofylline was discontinued. Now, propentofylline is used to treat canine cognitive dysfunction, which, like AD, involves age-associated wild-type Aβ deposition. CONCLUSION Phosphodiesterase inhibitors may prevent and treat AD.
Collapse
|
21
|
Cilostazol protects against acetic acid-induced colitis in rats: Possible role for cAMP/SIRT1 pathway. Eur J Pharmacol 2020; 881:173234. [PMID: 32497625 DOI: 10.1016/j.ejphar.2020.173234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
The phosphodiesterase-3 inhibitor, cilostazol has been recently shown to protect against chemically induced colitis in animal models. However, whether cyclic adenosine monophosphate (cAMP) contributes to the anti-inflammatory activity of cilostazol in colitis is still unknown. In the current study, we investigated the role of cAMP/silent information regulator-1 (SIRT-1) pathway in the protective effect of cilostazol using rat model of acetic acid-induced colitis. Upregulation of SIRT1 activity and expression has been recently shown to protect against chemically induced colitis. Our results demonstrated that cilostazol alleviated the histopathological changes associated with acetic acid-induced colitis. Interestingly, pre-administration of cilostazol increased cAMP concentration and SIRT1 expression in colonic mucosa to levels similar to that observed in control animals without induction of colitis. In addition, cilostazol inhibited the SIRT1 targets; NF-κB, Akt and MAPK inflammatory pathways as demonstrated by suppression of acetic acid-induced upregulation of NF-κB activity, p-AKT levels and the expression of p38 MAPK. NF-κB activity and the levels of p-AKT, tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) were similar in rats pretreated with cilostazol prior to induction of colitis and the control rats without colitis. Furthermore, cilostazol reduced acetic acid-induced oxidative stress and apoptosis. In conclusion, the protective effect of cilostazol against acetic acid-induced colitis may be attributed to activation of SIRT1 expression by cAMP. SIRT1 is suggested to contribute to cilostazol-induced suppression of NF-κB, Akt and MAPK inflammatory pathways, oxidative stress and apoptosis.
Collapse
|
22
|
Potential Therapeutic Approaches for Cerebral Amyloid Angiopathy and Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21061992. [PMID: 32183348 PMCID: PMC7139812 DOI: 10.3390/ijms21061992] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a cerebrovascular disease directly implicated in Alzheimer’s disease (AD) pathogenesis through amyloid-β (Aβ) deposition, which may cause the development and progression of dementia. Despite extensive studies to explore drugs targeting Aβ, clinical benefits have not been reported in large clinical trials in AD patients or presymptomatic individuals at a risk for AD. However, recent studies on CAA and AD have provided novel insights regarding CAA- and AD-related pathogenesis. This work has revealed potential therapeutic targets, including Aβ drainage pathways, Aβ aggregation, oxidative stress, and neuroinflammation. The functional significance and therapeutic potential of bioactive molecules such as cilostazol and taxifolin have also become increasingly evident. Furthermore, recent epidemiological studies have demonstrated that serum levels of a soluble form of triggering receptor expressed on myeloid cells 2 (TREM2) may have clinical significance as a potential novel predictive biomarker for dementia incidence. This review summarizes recent advances in CAA and AD research with a focus on discussing future research directions regarding novel therapeutic approaches and predictive biomarkers for CAA and AD.
Collapse
|