1
|
Ullah G, Nisar M, Rehman FU, Paree Paker N, Hussain Munis MF, Chaudhary HJ. Mitigating maize stalk rot disease: harnessing Bacillus subtilis PM57 and Bacillus cereus PM38 as biocontrol allies against Erwiniacarotovora. Microb Pathog 2025; 205:107556. [PMID: 40254077 DOI: 10.1016/j.micpath.2025.107556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/14/2025] [Accepted: 04/05/2025] [Indexed: 04/22/2025]
Abstract
Maize bacterial stalk rot, caused by Erwinia carotovora pv. zeae (EC) is a significant threat to maize production, and applicable biocontrol measures are lacking. This study aims to identify a potent biocontrol agent against Erwinia carotovora and enhance plant growth under stress conditions. Thirty strains were screened using the agar plate well diffusion method. Strains PM57 and PM38 exhibited the highest antagonistic activity, forming inhibition zones of 5.0 and 4.51 mm, while distilled water served as a control with no inhibition. Their cell-free supernatants (CFSs) also demonstrated strong antagonistic activity with the maximum inhibition zones of 7.0 and 5.5 mm. The minimum inhibitory concentration of cell-free supernatants from both strains was 50 μg/ml. PM57 was identified as Bacillus subtilis via 16S rRNA gene sequencing. FTIR analysis revealed functional groups, including sulfonates, carbohydrates, proteins, and polyphenols in PM38, while PM57 exhibited peaks related to C-N stretching and aliphatic primary amine. GC-MS analysis identified twenty-six bioactive compounds known for their biological and medicinal properties, including tert-butyl phenol compounds, hydrocarbons, aldehydes, benzoquinones, pyrroles, and terpenes. Both inoculants produced volatile metabolites that effectively inhibited Erwinia carotovora growth in vitro. A greenhouse study revealed that PM57 reduced stalk rot disease incidence by 76.83 %, while PM38 reduced it by 74.94 %. The application of both inoculants enhanced chlorophyll activity; PM57 increased plant-growth by 11 %, and PM38 by 6 % and improved pathogen stress tolerance in maize seedlings compared to the positive control. These results demonstrate the potential of PM57 and PM38 as effective biocontrol agents for sustainable maize cultivation.
Collapse
Affiliation(s)
- Ghufran Ullah
- Department of Plant Science, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Maleeha Nisar
- Department of Plant Science, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Fazal Ur Rehman
- Department of Plant Science, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Najeeba Paree Paker
- Department of Plant Science, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | | | - Hassan Javed Chaudhary
- Department of Plant Science, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| |
Collapse
|
2
|
Torres-Romero JC, Alvarez-Sánchez ME, Morales-Reyna M, Bellavista-Caballero A, Arreola R, Alvarez-Sánchez LC, Lara-Riegos J. Metacaspases-Like Proteases of Trichomonas vaginalis: In Silico Identification and Characterization. J Basic Microbiol 2025:e2400786. [PMID: 39865582 DOI: 10.1002/jobm.202400786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/10/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
Metacaspases (MCA), are cysteine-dependent proteases closely related to caspases. In protozoa, MCA plays an important role in programmed cell death (PCD). In Trichomonas vaginalis, a kind of PCD that resembles apoptosis has been described, but the activators of this mechanism have not been demonstrated. We performed a genome-wide in silico analysis in the T. vaginalis database using consensus MCA domains. A total of 15 protein annotations for MCA-like sequences were retrieved. Only 7/15 (TvMCA1-6 and TvMCA9) of the sequences were annotated as putative MCA and exhibited a similar range of amino acid length in comparison to the consensus sequences used for the query. By in silico analysis, we found that they are thermostable, hydrophilic proteins with molecular weights ranging from 27 to 33 KDa and their theoretical isoelectric points are in a 5.08-8.57 range. The phylogenetic analysis showed the similarity of conserved motifs for the predicted TvMCA proteins. 3D structure prediction by homology modeling demonstrated that TvMCA proteins show a similar conformation to crystallized MCA proteins. Taken together, our results indicate that these trichomonad proteins have conserved sequences like MCA proteins and suggest that they may be responsible for proteolytic activity during a PCD-like mechanism in this parasite.
Collapse
Affiliation(s)
- Julio César Torres-Romero
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | | | - Marcos Morales-Reyna
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de Mexico, México
| | - Andrea Bellavista-Caballero
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Rodrigo Arreola
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, México City, México
| | - Leidi C Alvarez-Sánchez
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Julio Lara-Riegos
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| |
Collapse
|
3
|
Araujo LH, Bueno Chagas TA, Reis T, de Morais Borba JRB, Trujilho MNR, Dalzoto LDAM, Marcondes MF, Juliano MA, Júdice WADS, Veloso MP, Machado MFM. Oximic compounds as potential inhibitors of metacaspase-2 (TbMCA2) of Trypanosoma brucei. Biochem Biophys Res Commun 2024; 735:150657. [PMID: 39265363 DOI: 10.1016/j.bbrc.2024.150657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
Metacaspases are a distinct class of cysteine proteases predominantly found in plants, fungi, and protozoa, crucial for regulating programmed cell death (PCD). They possess unique structural features and differ markedly from caspases in their activation mechanisms and substrate specificities, with a notable preference for binding basic residues in substrates. In this study, we introduced vanillin-derived oximic compounds to explore their pharmaceutical potential. We evaluated these compounds for their inhibitory effects on TbMCA2, a metacaspase in Trypanosoma brucei, identifying AO-7, AO-12, and EO-20 as promising inhibitors. AO-12 showed significant potential as a non-competitive inhibitor with notable IC50 values. Molecular docking studies were also conducted to evaluate the binding affinity of these compounds for TbMCA2. This research is particularly relevant given the urgent need for more effective and less toxic treatments for trypanosomiasis, a parasitic disease caused by trypanosomes. The absence of available vaccines and the limitations imposed by drug toxicity underscore the importance of these findings. Our study represents a significant advancement in developing therapeutic agents targeting metacaspases in trypanosomatids and highlights the necessity of understanding metacaspase regulation across various species. It provides valuable insights into inhibitor sensitivity and potential species-specific therapeutic strategies. In conclusion, this research opens promising avenues for novel therapeutic agents targeting metacaspases in trypanosomatids, addressing a critical gap in combating neglected diseases associated with these pathogens. Further research is essential to refine the efficacy and safety profiles of these compounds, aiming to deliver more accessible and effective therapeutic solutions to populations afflicted by these debilitating diseases.
Collapse
Affiliation(s)
- Laura Helena Araujo
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Thaynan Aparecida Bueno Chagas
- Pharmaceutical Science Department, Alfenas Federal University, Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Brazil
| | - Taiz Reis
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | | | - Mariana Nascimento Romero Trujilho
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Laura de Azevedo Maffeis Dalzoto
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Marcelo Ferreira Marcondes
- Department of Biophysics, São Paulo Federal University, Rua Pedro de Toledo, 669, 7° floor, 04039-032, São Paulo, Brazil
| | - Maria Aparecida Juliano
- Department of Biophysics, São Paulo Federal University, Rua Pedro de Toledo, 669, 7° floor, 04039-032, São Paulo, Brazil
| | - Wagner Alves de Souza Júdice
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil
| | - Márcia Paranho Veloso
- Pharmaceutical Science Department, Alfenas Federal University, Rua Gabriel Monteiro da Silva, 700, 37130-001, Alfenas, Brazil
| | - Maurício Ferreira Marcondes Machado
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil.
| |
Collapse
|
4
|
Blanco CM, de Souza HADS, Martins PDC, Fabbri C, Souza FSD, Lima-Junior JDC, Lopes SCP, Pratt-Riccio LR, Daniel-Ribeiro CT, Totino PRR. Profile of metacaspase gene expression in Plasmodium vivax field isolates from the Brazilian Amazon. Mol Biol Rep 2024; 51:594. [PMID: 38683374 PMCID: PMC11058907 DOI: 10.1007/s11033-024-09538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Metacaspases comprise a family of cysteine proteases implicated in both cell death and cell differentiation of protists that has been considered a potential drug target for protozoan parasites. However, the biology of metacaspases in Plasmodium vivax - the second most prevalent and most widespread human malaria parasite worldwide, whose occurrence of chemoresistance has been reported in many endemic countries, remains largely unexplored. Therefore, the present study aimed to address, for the first time, the expression pattern of metacaspases in P. vivax parasites. METHODS AND RESULTS P. vivax blood-stage parasites were obtained from malaria patients in the Brazilian Amazon and the expression of the three putative P. vivax metacaspases (PvMCA1-3) was detected in all isolates by quantitative PCR assay. Of note, the expression levels of each PvMCA varied noticeably across isolates, which presented different frequencies of parasite forms, supporting that PvMCAs may be expressed in a stage-specific manner as previously shown in P. falciparum. CONCLUSION The detection of metacaspases in P. vivax blood-stage parasites reported herein, allows the inclusion of these proteases as a potential candidate drug target for vivax malaria, while further investigations are still required to evaluate the activity, role and essentiality of metacaspases in P. vivax biology.
Collapse
Affiliation(s)
- Carolina Moreira Blanco
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro, Brasil
| | - Hugo Amorim Dos Santos de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro, Brasil
| | - Priscilla da Costa Martins
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro, Brasil
| | - Camila Fabbri
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brasil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brasil
| | | | | | - Stefanie Costa Pinto Lopes
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brasil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brasil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro, Brasil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro, Brasil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz and Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro, Brasil.
| |
Collapse
|
5
|
Kamil M, Kina UY, Atmaca HN, Unal S, Deveci G, Burak P, Aly ASI. Endoplasmic reticulum localized TMEM33 domain-containing protein is crucial for all life cycle stages of the malaria parasite. Mol Microbiol 2024; 121:767-780. [PMID: 38238886 DOI: 10.1111/mmi.15228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 04/19/2024]
Abstract
Endoplasmic reticulum (ER) plays a pivotal role in the regulation of stress responses in multiple eukaryotic cells. However, little is known about the effector mechanisms that regulate stress responses in ER of the malaria parasite. Herein, we aimed to identify the importance of a transmembrane protein 33 (TMEM33)-domain-containing protein in life cycle of the rodent malaria parasite Plasmodium berghei. TMEM33 is an ER membrane-resident protein that is involved in regulating stress responses in various eukaryotic cells. A C-terminal tagged TMEM33 was localized in the ER throughout the blood and mosquito stages of development. Targeted deletion of TMEM33 confirmed its importance for asexual blood stages and ookinete development, in addition to its essential role for sporozoite infectivity in the mammalian host. Pilot scale analysis shows that the loss of TMEM33 results in the initiation of ER stress response and induction of autophagy. Our findings conclude an important role of TMEM33 in the development of all life cycle stages of the malaria parasite, which indicates its potential as an antimalarial target.
Collapse
Affiliation(s)
- Mohd Kamil
- Aly Lab, Department of Microbiology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
- Center for Global Infectious Disease Research, Seattle Childrens Research Institute, Seattle, Washington, USA
| | - Umit Yasar Kina
- Aly Lab, Department of Microbiology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Habibe Nur Atmaca
- Aly Lab, Department of Microbiology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Sinem Unal
- Aly Lab, Department of Microbiology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Gozde Deveci
- Aly Lab, Department of Microbiology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Pinar Burak
- Aly Lab, Department of Microbiology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Ahmed S I Aly
- Aly Lab, Department of Microbiology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
- Department of Biotechnology, School of Science and Engineering, Al Akhawayn University, Ifrane, Morocco
| |
Collapse
|
6
|
Yadav K, Kuldeep J, Shabeer Ali H, Siddiqi MI, Tripathi R. Metacaspase (Pf MCA-1) as antimalarial drug target: An in silico approach and their biological validation. Life Sci 2023; 335:122271. [PMID: 37977356 DOI: 10.1016/j.lfs.2023.122271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
AIMS Acquired drug resistance of Plasmodium is a global issue for the treatment of malaria. There are various proteases in the genome of Plasmodium falciparum (P. falciparum) including metacaspase-1 (PfMCA-1) that are essential and are being considered as an attractive drug target. It is aimed to identify novel therapeutics against malaria and their action on PfMCA-1 along with other apoptotic pathway events. MAIN METHODS High throughput virtual screening of 55,000 compounds derived from Maybridge library was performed against PfMCA-1. Based on the docking score, sixteen compounds were selected for in vitro antimalarial screening against drug sensitive and resistant strains of P. falciparum using SYBR green-based assay. Subsequently, three lead molecules were selected and subjected to the evaluation of cytotoxicity, caspase like protease activity, mitochondrial membrane potential, ROS generation and DNA fragmentation via TUNEL assay. KEY FINDINGS The in silico and in vitro approaches have brought forward some Maybridge library compounds with antiplasmodial activity most likely by enhancing the metacaspase activity. The compound CD11095 has shown better antimalarial efficacy, and KM06591 depicted higher caspase mediated killing, elevated TUNEL positive cells and moderate ROS generation. Mitochondrial membrane depolarization was augmented by RJC0069. Exposure of P. falciparum to CD11095, KM06591 and RJC0069 has ended up in parasite growth arrest via multiple mechanisms. SIGNIFICANCE It is proposed that the Maybridge molecules CD11095, KM06591 and RJC0069 have antimalarial activity. Their mechanism of action was found to be by enhancing the metacaspases-like protease activity, mitochondrial depolarization and DNA fragmentation which stipulates significant insights towards promising candidates for drug development.
Collapse
Affiliation(s)
- Kanchan Yadav
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Jitendra Kuldeep
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - H Shabeer Ali
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Mohammad Imran Siddiqi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Renu Tripathi
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
7
|
Wang B, Zhao N, Sun L, Tan Q, Xiao Q, Chen J, Li J, Zhang X, Zhao X. A candidate virulence factor of Eimeria tenella (EtROP30) predicted by virulence enhancement of transgenic Toxoplasma gondii. Parasitol Res 2023; 123:45. [PMID: 38095706 DOI: 10.1007/s00436-023-08079-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
Difficulties of in vitro culture and genetic manipulation of Eimeria tenella have hindered the screening of virulence factors in this parasite. In this study, the E. tenella rhoptry protein 30 (EtROP30) was expressed in Toxoplasma gondii (RH∆Ku80-EtROP30), and its effect on the proliferation and virulence of parasites was investigated. The results revealed that the expression of EtROP30 had no impact on the invasion and egress processes. However, the RH∆Ku80-EtROP30 strain formed larger plaques compared to the RH∆Ku80, indicating that the EtROP30 expression promotes T. gondii proliferation. Furthermore, the RH∆Ku80-EtROP30 strain exhibited greater pathogenicity, resulting in earlier mortality and shorter overall survival time compared to RH∆Ku80. These results imply that EtROP30 expression facilitates parasite intracellular proliferation and virulence in mice, suggesting that EtROP30 might be a candidate virulence factor of E. tenella.
Collapse
Affiliation(s)
- Bingxiang Wang
- Pet Disease Prevention and Control Laboratory, Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Qianqian Tan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Qianqian Xiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Junpeng Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Jinxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China.
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
8
|
Zhao ZC, Jiang MY, Huang JH, Lin C, Guo WL, Zhong ZH, Huang QQ, Liu SL, Deng HW, Zhou YC. Honokiol induces apoptosis-like death in Cryptocaryon irritans Tomont. Parasit Vectors 2023; 16:287. [PMID: 37587480 PMCID: PMC10428556 DOI: 10.1186/s13071-023-05910-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Cryptocaryon irritans, a common parasite in tropical and subtropical marine teleost fish, has caused serious harm to the marine aquaculture industry. Honokiol was proven to induce C. irritans tomont cytoplasm shrinkage and death in our previous study, but the mechanism by which it works remains unknown. METHODS In this study, the changes of apoptotic morphology and apoptotic ratio were detected by microscopic observation and AnnexinV-FITC/PI staining. The effects of honokiol on intracellular calcium ([Ca2+]i) concentration, mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS), quantity of DNA fragmentations (QDF) and caspase activities were detected by Fluo-3 staining, JC-1 staining, DCFH-DA staining, Tunel method and caspase activity assay kit. The effects of honokiol on mRNA expression levels of 61 apoptosis-related genes in tomonts of C. irritans were detected by real-time PCR. RESULTS The results of the study on the effects of honokiol concentration on C. irritans tomont apoptosis-like death showed that the highest levels of prophase apoptosis-like death rate (PADR), [Ca2+]i concentration, ROS, the activities of caspase-3/9 and the lowest necrosis ratio (NER) were obtained at a concentration of 1 μg/ml, which was considered the most suitable for inducing C. irritans tomont apoptosis-like death. When C. irritans tomonts were treated with 1 μg/ml honokiol, the [Ca2+]i concentration began to increase significantly at 1 h. Following this, the ROS, QDF and activities of caspase-3/9 began to increase significantly, and the ΔΨm began to decrease significantly at 2 h; the highest PADR was obtained at 4 h. The mRNA expression of 14 genes was significantly upregulated during honokiol treatment. Of these genes, itpr2, capn1, mc, actg1, actb, parp2, traf2 and fos were enriched in the pathway related to apoptosis induced by endoplasmic reticulum (ER) stress. CONCLUSIONS This article shows that honokiol can induce C. irritans tomont apoptosis-like death. These results suggest that honokiol may disrupt [Ca2+]i homeostasis in ER and then induce C. irritans tomont apoptosis-like death by caspase cascade or mitochondrial pathway, which might represent a novel therapeutic intervention for C. irritans infection.
Collapse
Affiliation(s)
- Zi-Chen Zhao
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
- School of Life Sciences, Hainan University, Haikou, 570228, People's Republic of China
| | - Man-Yi Jiang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Ji-Hui Huang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
- Technology Center of Haikou Customs District, Haikou, 570105, People's Republic of China
| | - Chuan Lin
- Aquaculture Department, Hainan Agriculture School, Haikou, 571101, People's Republic of China
| | - Wei-Liang Guo
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China.
| | - Zhi-Hong Zhong
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Qing-Qin Huang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Shao-Long Liu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Heng-Wei Deng
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Yong-Can Zhou
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|
9
|
Mirzaei M, Sharifi I, Mohammad-Rafi F, Anjomshoa M, Abiri A, Moqaddari AH, Nooshadokht M, Raiesi O, Amirheidari B. Antileishmanial effects and drugability characteristics of a heterocyclic copper complex: An in silico, in vitro and molecular study. J Inorg Biochem 2023; 245:112245. [PMID: 37167732 DOI: 10.1016/j.jinorgbio.2023.112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Leishmaniasis caused by the protozoan Leishmania presents a severe illness, principally in tropical and subtropical areas. Antileishmanial metal complexes, like Glucantime®️ with proven activity, are routinely studied to probe their potency. We investigated the effects of a Cu (II) homoleptic complex coordinated by two dimethyl-bipyridine ligands against Leishmania major stages in silico and in vitro. The affinity of this heterocyclic Cu (II) complex (CuDMBP) towards a parasitic metacaspase was studied by molecular docking. Key pharmacokinetic and pharmacodynamic properties of the complex were predicted using three web-based tools. CuDMBP was tested for in vitro antileishmanial activities using MTT assay, model murine macrophages, flow cytometry, and quantitative real-time polymerase chain reaction (qPCR). Molecular docking confirmed the tendency between the target macromolecule and the complex. ADMET evaluations highlighted CuDMBP's key pharmacological features, including P-glycoprotein-associated GI absorption and lack of trans-BBB permeability. MTT showed significant inhibitory effects against promastigotes. CuDMBP significantly increased the level of cellular IL-12 expression (p < 0.05), while the upregulation observed in the expression of iNOS was considered not significant (p > 0.05). It decreased the expression of IL-10 significantly (p < 0.05). Findings demonstrated that CuDMBP deserves to be introduced as a leishmanicidal candidate provided further studies are carried out.
Collapse
Affiliation(s)
- Mohammad Mirzaei
- Pathobiology Department, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Farrokh Mohammad-Rafi
- Pathobiology Department, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Marzieh Anjomshoa
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Hossain Moqaddari
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Maryam Nooshadokht
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran; Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Omid Raiesi
- Department of Parasitology, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran; Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Bagher Amirheidari
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
10
|
Lam DK, Sherlock G. Yca1 metacaspase: diverse functions determine how yeast live and let die. FEMS Yeast Res 2023; 23:foad022. [PMID: 37002543 PMCID: PMC10094001 DOI: 10.1093/femsyr/foad022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/03/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
The Yca1 metacaspase was discovered due to its role in the regulation of apoptosis in Saccharomyces cerevisiae. However, the mechanisms that drive apoptosis in yeast remain poorly understood. Additionally, Yca1 and other metacaspase proteins have recently been recognized for their involvement in other cellular processes, including cellular proteostasis and cell cycle regulation. In this minireview, we outline recent findings on Yca1 that will enable the further study of metacaspase multifunctionality and novel apoptosis pathways in yeast and other nonmetazoans. In addition, we discuss advancements in high-throughput screening technologies that can be applied to answer complex questions surrounding the apoptotic and nonapoptotic functions of metacaspase proteins across a diverse range of species.
Collapse
Affiliation(s)
- Darren K Lam
- Department of Genetics, Stanford University, 240 Pasteur Dr, Stanford, CA 94305-5120, United States
| | - Gavin Sherlock
- Department of Genetics, Stanford University, 240 Pasteur Dr, Stanford, CA 94305-5120, United States
| |
Collapse
|
11
|
Kumari V, Prasad KM, Kalia I, Sindhu G, Dixit R, Rawat DS, Singh OP, Singh AP, Pandey KC. Dissecting The role of Plasmodium metacaspase-2 in malaria gametogenesis and sporogony. Emerg Microbes Infect 2022; 11:938-955. [PMID: 35264080 PMCID: PMC8973346 DOI: 10.1080/22221751.2022.2052357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
The family of apicomplexan specific proteins contains caspases-like proteins called "metacaspases". These enzymes are present in the malaria parasite but absent in human; therefore, these can be explored as potential drug targets. We deleted the MCA-2 gene from Plasmodium berghei genome using a gene knockout strategy to decipher its precise function. This study has identified that MCA-2 plays an important role in parasite transmission since it is critical for the formation of gametocytes and for maintaining an appropriate number of infectious sporozoites required for sporogony. It is noticeable that a significant reduction in gametocyte, oocysts, ookinete and sporozoites load along with a delay in hepatocytes invasion were observed in the MCA-2 knockout parasite. Furthermore, a study found the two MCA-2 inhibitory molecules known as C-532 and C-533, which remarkably inhibited the MCA-2 activity, abolished the in vitro parasite growth, and also impaired the transmission cycle of P. falciparum and P. berghei in An. stephensi. Our findings indicate that the deletion of MCA-2 hampers the Plasmodium development during erythrocytic and exo-erythrocytic stages, and its inhibition by C-532 and C-533 critically affects the malaria transmission biology.
Collapse
Affiliation(s)
- Vandana Kumari
- ICMR-National Institute of Malaria Research, New Delhi, India
| | | | | | | | - Rajnikant Dixit
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Diwan S. Rawat
- Depatment of Chemistry, University of Delhi, New Delhi, India
| | - O. P. Singh
- ICMR-National Institute of Malaria Research, New Delhi, India
| | | | - Kailash C. Pandey
- ICMR-National Institute of Malaria Research, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad Uttar Pradesh, UP, India
| |
Collapse
|
12
|
Bhadra K. A Mini Review on Molecules Inducing Caspase-Independent Cell Death: A New Route to Cancer Therapy. Molecules 2022; 27:molecules27196401. [PMID: 36234938 PMCID: PMC9572491 DOI: 10.3390/molecules27196401] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Most anticancer treatments trigger tumor cell death through apoptosis, where initiation of proteolytic action of caspase protein is a basic need. But under certain circumstances, apoptosis is prevented by the apoptosis inhibitor proteins, survivin and Hsp70. Several drugs focusing on classical programmed death of the cell have been reported to have low anti-tumorogenic potency due to mutations in proteins involved in the caspase-dependent programmed cell death with intrinsic and extrinsic pathways. This review concentrates on the role of anti-cancer drug molecules targeting alternative pathways of cancer cell death for treatment, by providing a molecular basis for the new strategies of novel anti-cancer treatment. Under these conditions, active agents targeting alternative cell death pathways can be considered as potent chemotherapeutic drugs. Many natural compounds and other small molecules, such as inorganic and synthetic compounds, including several repurposing drugs, are reported to cause caspase-independent cell death in the system. However, few molecules indicated both caspase-dependent as well caspase-free cell death in specific cancer lines. Cancer cells have alternative methods of caspase-independent programmed cell death which are equally promising for being targeted by small molecules. These small molecules may be useful leads for rational therapeutic drug design, and can be of potential interest for future cancer-preventive strategies.
Collapse
Affiliation(s)
- Kakali Bhadra
- Department of Zoology, University of Kalyani, Nadia, Kalyani 741235, India
| |
Collapse
|
13
|
Dziduch K, Greniuk D, Wujec M. The Current Directions of Searching for Antiparasitic Drugs. Molecules 2022; 27:1534. [PMID: 35268635 PMCID: PMC8912034 DOI: 10.3390/molecules27051534] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/02/2022] Open
Abstract
Parasitic diseases are still a huge problem for mankind. They are becoming the main cause of chronic diseases in the world. Migration of the population, pollution of the natural environment, and climate changes cause the rapid spread of diseases. Additionally, a growing resistance of parasites to drugs is observed. Many research groups are looking for effective antiparasitic drugs with low side effects. In this work, we present the current trends in the search for antiparasitic drugs. We report known drugs used in other disease entities with proven antiparasitic activity and research on new chemical structures that may be potential drugs in parasitic diseases. The described investigations of antiparasitic compounds can be helpful for further drug development.
Collapse
Affiliation(s)
| | | | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (K.D.); (D.G.)
| |
Collapse
|
14
|
Screening and Identification of Metacaspase Inhibitors: Evaluation of Inhibition Mechanism and Trypanocidal Activity. Antimicrob Agents Chemother 2021; 65:AAC.01330-20. [PMID: 33318019 DOI: 10.1128/aac.01330-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/07/2020] [Indexed: 11/20/2022] Open
Abstract
A common strategy to identify new antiparasitic agents is the targeting of proteases, due to their essential contributions to parasite growth and development. Metacaspases (MCAs) are cysteine proteases present in fungi, protozoa, and plants. These enzymes, which are associated with crucial cellular events in trypanosomes, are absent in the human host, thus arising as attractive drug targets. To find new MCA inhibitors with trypanocidal activity, we adapted a continuous fluorescence enzymatic assay to a medium-throughput format and carried out screening of different compound collections, followed by the construction of dose-response curves for the most promising hits. We used MCA5 from Trypanosoma brucei (TbMCA5) as a model for the identification of inhibitors from the GlaxoSmithKline HAT and CHAGAS chemical boxes. We also assessed a third collection of nine compounds from the Maybridge database that had been identified by virtual screening as potential inhibitors of the cysteine peptidase falcipain-2 (clan CA) from Plasmodium falciparum Compound HTS01959 (from the Maybridge collection) was the most potent inhibitor, with a 50% inhibitory concentration (IC50) of 14.39 µM; it also inhibited other MCAs from T. brucei and Trypanosoma cruzi (TbMCA2, 4.14 µM; TbMCA3, 5.04 µM; TcMCA5, 151 µM). HTS01959 behaved as a reversible, slow-binding, and noncompetitive inhibitor of TbMCA2, with a mechanism of action that included redox components. Importantly, HTS01959 displayed trypanocidal activity against bloodstream forms of T. brucei and trypomastigote forms of T. cruzi, without cytotoxic effects on Vero cells. Thus, HTS01959 is a promising starting point to develop more specific and potent chemical structures to target MCAs.
Collapse
|
15
|
Silva AR, Moraes BPT, Gonçalves-de-Albuquerque CF. Mediterranean Diet: Lipids, Inflammation, and Malaria Infection. Int J Mol Sci 2020; 21:ijms21124489. [PMID: 32599864 PMCID: PMC7350014 DOI: 10.3390/ijms21124489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022] Open
Abstract
The Mediterranean diet (MedDiet) consists of consumption of vegetables and healthy oils and have beneficial effects on metabolic and inflammatory diseases. Our goal here is to discuss the role of fatty acid content in MedDiet, mostly omega-3, omega-6, and omega-9 on malaria. Malaria affects millions of people around the globe. The parasite Plasmodium causes the disease. The metabolic and inflammatory alterations in the severe forms have damaging consequences to the host. The lipid content in the MedDiet holds anti-inflammatory and pro-resolutive features in the host and have detrimental effects on the Plasmodium. The lipids from the diet impact the balance of pro- and anti-inflammation, thus, lipids intake from the diet is critical to parasite elimination and host tissue damage caused by an immune response. Herein, we go into the cellular and molecular mechanisms and targets of the MedDiet fatty acids in the host and the parasite, reviewing potential benefits of the MedDiet, on inflammation, malaria infection progression, and clinical outcome.
Collapse
Affiliation(s)
- Adriana R. Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Neurociências da Universidade Federal Fluminense (UFF), Niterói 24020-141, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Correspondence: or (A.R.S.); or (C.F.G.-d.-A.)
| | - Bianca P. T. Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Neurociências da Universidade Federal Fluminense (UFF), Niterói 24020-141, Brazil
- Laboratório de Imunofarmacologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20210-010, Brazil
| | - Cassiano F. Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Neurociências da Universidade Federal Fluminense (UFF), Niterói 24020-141, Brazil
- Laboratório de Imunofarmacologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20210-010, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, UNIRIO, Rio de Janeiro 20210-010, Brazil
- Correspondence: or (A.R.S.); or (C.F.G.-d.-A.)
| |
Collapse
|
16
|
Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria. Nature 2020; 582:104-108. [PMID: 32427965 DOI: 10.1038/s41586-020-2220-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/20/2020] [Indexed: 11/09/2022]
Abstract
Malaria caused by Plasmodium falciparum remains the leading single-agent cause of mortality in children1, yet the promise of an effective vaccine has not been fulfilled. Here, using our previously described differential screening method to analyse the proteome of blood-stage P. falciparum parasites2, we identify P. falciparum glutamic-acid-rich protein (PfGARP) as a parasite antigen that is recognized by antibodies in the plasma of children who are relatively resistant-but not those who are susceptible-to malaria caused by P. falciparum. PfGARP is a parasite antigen of 80 kDa that is expressed on the exofacial surface of erythrocytes infected by early-to-late-trophozoite-stage parasites. We demonstrate that antibodies against PfGARP kill trophozoite-infected erythrocytes in culture by inducing programmed cell death in the parasites, and that vaccinating non-human primates with PfGARP partially protects against a challenge with P. falciparum. Furthermore, our longitudinal cohort studies showed that, compared to individuals who had naturally occurring anti-PfGARP antibodies, Tanzanian children without anti-PfGARP antibodies had a 2.5-fold-higher risk of severe malaria and Kenyan adolescents and adults without these antibodies had a twofold-higher parasite density. By killing trophozoite-infected erythrocytes, PfGARP could synergize with other vaccines that target parasite invasion of hepatocytes or the invasion of and egress from erythrocytes.
Collapse
|
17
|
López-Arencibia A, San Nicolás-Hernández D, Bethencourt-Estrella CJ, Sifaoui I, Reyes-Batlle M, Rodríguez-Expósito RL, Rizo-Liendo A, Lorenzo-Morales J, Bazzocchi IL, Piñero JE, Jiménez IA. Withanolides from Withania aristata as Antikinetoplastid Agents through Induction of Programmed Cell Death. Pathogens 2019; 8:pathogens8040172. [PMID: 31581590 PMCID: PMC6963971 DOI: 10.3390/pathogens8040172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 12/16/2022] Open
Abstract
Leishmaniasis and American trypanosomiasis are parasitic diseases that cause significant clinical, social and economic impact on the population of tropical and subtropical countries. Their current treatment is limited and presents multiple drawbacks, including high toxicity, high cost, lengthy treatment plans, as well as the emergence of resistant species. Therefore, there is a need to find new lead compounds with high potency against parasites and low toxicity in patients. In the present work, the bioguided fractionation of an endemic plant from the Canary Islands, Withania aristata, led to the identification of withanolide-type metabolites (1-3) with leishmanicidal and trypanocidal activities. Compounds 1 and 3 showed a significant dose-dependent inhibition effect on the proliferation of L. amazonensis promastigotes and T. cruzi epimastigotes, higher than the reference drugs, miltefosine and benznidazole, respectively. Moreover, compounds 1-3 were more potent (IC50 0.055-0.663 µM) than the reference drug against the intracellular amastigote stage of L. amazonensis, with a high selectivity index on murine macrophage cells (SI 58.66-216.73). Studies on the mechanism of death showed that the compounds induced programmed cell death or that which was apoptosis-like. The present findings underline the potential of withanolides as novel therapeutic antikinetoplastid agents.
Collapse
Affiliation(s)
- Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain.
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
| | - Carlos J Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
| | - Rubén L Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
| | - Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain.
| | - Isabel L Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Canary Islands, Spain.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain.
| | - Ignacio A Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|