1
|
Sumneang N, Kobroob A, Phungphong S, Boonhoh W, Punsawad C, Kangwan N. Fermented Houttuynia cordata Juice Exerts Cardioprotective Effects by Alleviating Cardiac Inflammation and Apoptosis in Rats with Lipopolysaccharide-Induced Sepsis. Nutrients 2025; 17:501. [PMID: 39940359 PMCID: PMC11820264 DOI: 10.3390/nu17030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Sepsis-induced cardiac dysfunction is a major problem that often leads to severe complications and a poor prognosis. Despite the growing awareness of its impact, effective treatment options for sepsis-induced cardiac dysfunction remain limited. To date, fermented products of Houttuynia cordata (HC), known for its rich bioactive properties, have shown potential in modulating inflammatory and oxidative stress pathways. However, treatment with fermented HC juice (FHJ) in lipopolysaccharide (LPS)-induced sepsis in rats has not been investigated. METHODS Rats were pretreated with FHJ at doses of 200 mg/kg and 400 mg/kg for 2 weeks. After that, the rats were injected with a single dose of LPS (10 mg/kg), and 12 h after injection, they developed sepsis-induced cardiac dysfunction. Then, cardiac function, oxidative stress, inflammation, apoptosis, and cardiac injury markers were determined. RESULTS Pretreatment with FHJ at doses of 200 mg/kg and 400 mg/kg prevented LPS-induced cardiac dysfunction in rats by attenuating cardiac inflammation (IL-1β, TLR-4, and NF-κB levels), oxidative stress (MDA levels), and apoptosis (cleaved-caspase 3 and Bax/Bcl-2 expression) and reducing markers of cardiac injury (LDH and CK-MB levels). CONCLUSIONS These results suggest that FHJ could be a potential therapeutic agent for sepsis-induced heart disease.
Collapse
Affiliation(s)
- Natticha Sumneang
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand; (N.S.); (S.P.); (C.P.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Anongporn Kobroob
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Sukanya Phungphong
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand; (N.S.); (S.P.); (C.P.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Worakan Boonhoh
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Chuchard Punsawad
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand; (N.S.); (S.P.); (C.P.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Napapan Kangwan
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| |
Collapse
|
2
|
Veeram A, Shaikh TB, Kaur R, Chowdary EA, Andugulapati SB, Sistla R. Yohimbine Treatment Alleviates Cardiac Inflammation/Injury and Improves Cardiac Hemodynamics by Modulating Pro-Inflammatory and Oxidative Stress Indicators. Inflammation 2024; 47:1423-1443. [PMID: 38466531 DOI: 10.1007/s10753-024-01985-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
Acute myocarditis, also known as myocardial inflammation, is a self-limited condition caused by systemic infection with cardiotropic pathogens, primarily viruses, bacteria, or fungi. Despite significant research, inflammatory cardiomyopathy exacerbated by heart failure, arrhythmia, or left ventricular dysfunction and it has a dismal prognosis. In this study, we aimed to evaluate the therapeutic effect of yohimbine against lipopolysaccharide (LPS) induced myocarditis in rat model. The anti-inflammatory activity of yohimbine was assessed in in-vitro using RAW 264.7 and H9C2 cells. Myocarditis was induced in rats by injecting LPS (10 mg/kg), following the rats were treated with dexamethasone (2 mg/kg) or yohimbine (2.5, 5, and 10 mg/kg) for 12 h and their therapeutic activity was examined using various techniques. Yohimbine treatment significantly attenuated the LPS-mediated inflammatory markers expression in the in-vitro model. In-vivo studies proved that yohimbine treatment significantly reduced the LPS-induced increase of cardiac-specific markers, inflammatory cell counts, and pro-inflammatory markers expression compared to LPS-control samples. LPS administration considerably affected the ECG, RR, PR, QRS, QT, ST intervals, and hemodynamic parameters, and caused abnormal pathological parameters, in contrast, yohimbine treatment substantially improved the cardiac parameters, mitigated the apoptosis in myocardial cells and ameliorated the histopathological abnormalities that resulted in an improved survival rate. LPS-induced elevation of cardiac troponin-I, myeloperoxidase, CD-68, and neutrophil elastase levels were significantly attenuated upon yohimbine treatment. Further investigation showed that yohimbine exerts an anti-inflammatory effect partly by modulating the MAPK pathway. This study emphasizes yohimbine's therapeutic benefit against LPS-induced myocarditis and associated inflammatory markers response by regulating the MAPK pathway.
Collapse
Affiliation(s)
- Anjali Veeram
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Taslim B Shaikh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Rajwinder Kaur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - E Abhisheik Chowdary
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
3
|
Cao S, Zhang Y, Bao R, Wang T, Zhu L, Zhang Q. Helicobacter hepaticus promotes liver fibrosis through oxidative stress induced by hydrogenase in BALB/c mice. Helicobacter 2023; 28:e13001. [PMID: 37334992 DOI: 10.1111/hel.13001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND It has been documented that Helicobacter hepaticus produces a nickel-containing hydrogen-oxidizing hydrogenase enzyme, which is necessary for hydrogen-supported amino acid uptake. Although H. hepaticus infection has been shown to promote liver inflammation and fibrosis in BALB/c mice, the impact of hydrogenase on the progression of liver fibrosis induced by H. hepaticus has not been explored. MATERIALS AND METHODS BALB/c mice were inoculated with hydrogenase mutant (ΔHyaB) or wild type (WT) H. hepaticus 3B1 for 12 and 24 weeks. H. hepaticus colonization, hepatic histopathology, serum biochemistry, expression of inflammatory cytokines, and oxidative stress signaling pathways were detected. RESULTS We found that ΔHyaB had no influence on the colonization of H. hepaticus in the liver of mice at 12 and 24 weeks post infection (WPI). However, mice infected by ΔHyaB strains developed significantly alleviated liver inflammation and fibrosis compared with WT infection. Moreover, ΔHyaB infection remarkably increased the expression of hepatic GSH, SOD, and GSH-Px, and decreased the liver levels of MDA, ALT, and AST compared to WT H. hepaticus infected group from 12 to 24 WPI. Furthermore, mRNA levels of Il-6, Tnf-α, iNos, Hmox-1, and α-SMA were significantly decreased with an increase of Nfe2l2 in the liver of mice infected by ΔHyaB strains. In addition, ΔHyaB H. hepaticus restored the activation of the Nrf2/HO-1 signaling pathway, which is inhibited by H. hepaticus infection. CONCLUSIONS These data demonstrated that H. hepaticus hydrogenase promoted liver inflammation and fibrosis development mediated by oxidative stress in male BALB/c mice.
Collapse
Affiliation(s)
- Shuyang Cao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yuanyuan Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ruoyu Bao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tao Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Liqi Zhu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Quan Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Wang Y, Fan Y, Jiang Y, Wang E, Song Y, Chen H, Xu F, Xie K, Yu Y. APOA2: New Target for Molecular Hydrogen Therapy in Sepsis-Related Lung Injury Based on Proteomic and Genomic Analysis. Int J Mol Sci 2023; 24:11325. [PMID: 37511084 PMCID: PMC10379236 DOI: 10.3390/ijms241411325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Target biomarkers for H2 at both the protein and genome levels are still unclear. In this study, quantitative proteomics acquired from a mouse model were first analyzed. At the same time, functional pathway analysis helped identify functional pathways at the protein level. Then, bioinformatics on mRNA sequencing data were conducted between sepsis and normal mouse models. Differential expressional genes with the closest relationship to disease status and development were identified through module correlation analysis. Then, common biomarkers in proteomics and transcriptomics were extracted as target biomarkers. Through analyzing expression quantitative trait locus (eQTL) and genome-wide association studies (GWAS), colocalization analysis on Apoa2 and sepsis phenotype was conducted by summary-data-based Mendelian randomization (SMR). Then, two-sample and drug-target, syndrome Mendelian randomization (MR) analyses were all conducted using the Twosample R package. For protein level, protein quantitative trait loci (pQTLs) of the target biomarker were also included in MR. Animal experiments helped validate these results. As a result, Apoa2 protein or mRNA was identified as a target biomarker for H2 with a protective, causal relationship with sepsis. HDL and type 2 diabetes were proven to possess causal relationships with sepsis. The agitation and inhibition of Apoa2 were indicated to influence sepsis and related syndromes. In conclusion, we first proposed Apoa2 as a target for H2 treatment.
Collapse
Affiliation(s)
- Yuanlin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yan Fan
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Enquan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu Song
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongguang Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feier Xu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
5
|
Alanazi WA, Alharbi T, El-Nagar DM, Albogami AM, Alswayyed M. Dapagliflozin Mitigates Hypotension in Lipopolysaccharide-Induced Acute Inflammation Independent of Glycemia Level. Pharmaceutics 2023; 15:1683. [PMID: 37376131 DOI: 10.3390/pharmaceutics15061683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors have been suggested to have anti-inflammatory properties in diabetes. The goal of this study was to evaluate the role of the SGLT2 inhibitor dapagliflozin (DAPA) in the attenuation of lipopolysaccharide (LPS)-induced hypotension. Male Wistar albino rats were divided into normal and diabetic groups and received DAPA (1 mg/kg/day) for two weeks followed by a single dose of 10 mg/kg LPS. Blood pressure was recorded throughout the study and the circulatory levels of cytokines were assessed using a multiplex array, while the aortas were harvested for analysis. DAPA attenuated the vasodilation and hypotension caused by LPS. Mean arterial pressure (MAP) was preserved in the normal and diabetic DAPA-treated septic groups (MAP = 83.17 ± 5.27, 98.43 ± 5.57 mmHg) compared to the vehicle-treated septic groups (MAP = 65.60 ± 3.31, 68.21 ± 5.88 mmHg). Most of the cytokines induced by LPS were decreased in the DAPA-treated septic groups. In the aorta, the inducible nitric oxide synthase-derived nitric oxide had lower expression in the DAPA-treated rats. In contrast, the expression of α-smooth muscle actin, a marker of the vessel's contractile state, was higher in the DAPA-treated rats in comparison with non-treated septic rats. These findings revealed that the protective role of DAPA against LPS-induced hypotension is likely to be glucose-lowering independent, as was observed in the non-diabetic septic group. Taken together, the results show that DAPA has a potential effect in the prevention of the hemodynamic disturbances of sepsis regardless of glycemia levels.
Collapse
Affiliation(s)
- Wael A Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Turki Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Doaa M El-Nagar
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M Albogami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alswayyed
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Wei Y, Wang K, Zhang Y, Duan Y, Tian Y, Yin H, Fu X, Ma Z, Zhou J, Yu M, Ni Q, Tang W. Potent anti-inflammatory responses: Role of hydrogen in IL-1α dominated early phase systemic inflammation. Front Pharmacol 2023; 14:1138762. [PMID: 37007020 PMCID: PMC10063881 DOI: 10.3389/fphar.2023.1138762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction: It has been proven that hydrogen has obvious anti-inflammatory effects in animal experiments and clinical practice. However, the early dynamic process of the inflammatory response caused by lipopolysaccharide (LPS) and the anti-inflammatory effect of hydrogen has not been definitively reported. Methods: Inflammation in male C57/BL6J mice or RAW264.7 cells was induced with LPS, for which hydrogen was immediately administered until samples were taken. Pathological changes in lung tissue were assessed using hematoxylin and eosin (HE) staining. Levels of inflammatory factors in serum were determined using liquid protein chip. The mRNA levels of chemotactic factors in lung tissues, leukocytes, and peritoneal macrophages were measured by qRT-PCR. The expression levels of IL-1α and HIF-1α were measured by immunocytochemistry. Results: Hydrogen alleviated LPS-induced inflammatory infiltration in the lung tissues of mice. Among the 23 inflammatory factors screened, LPS-induced upregulation of IL-1α etc. was significantly inhibited by hydrogen within 1 hour. The mRNA expression of MCP-1, MIP-1α, G-CSF, and RANTES was inhibited obviously by hydrogen at 0.5 and 1 h in mouse peritoneal macrophages. In addition, hydrogen significantly blocked LPS or H2O2-induced upregulation of HIF-1α, and IL-1α in 0.5 h in RAW264.7 cells. Discussion: The results suggested that hydrogen is potentially inhibitive against inflammation by inhibiting HIF-1α and IL-1α release at early occurrence. The target of the inhibitive LPS-induced-inflammatory action of hydrogen is chemokines in macrophages in the peritoneal cavity. This study provides direct experimental evidence for quickly controlling inflammation with the translational application of a hydrogen-assisted protocol.
Collapse
Affiliation(s)
- Youzhen Wei
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
- Hydrogen Medicine Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
- Research Center for Translational Medicine, Jinan People’s Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Kun Wang
- Office of Academic Research, Taishan Vocational College of Nursing, Taian, Shandong, China
| | - Yafang Zhang
- Department of Neonatology and NICU, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Yi Duan
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Tian
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongling Yin
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuelian Fu
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zuan Ma
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Zhou
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Yu
- The Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, Shanghai, China
| | - Qingbin Ni
- Hydrogen Medicine Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
- *Correspondence: Wenjie Tang, ; Qingbin Ni,
| | - Wenjie Tang
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
- Research Institute of Regenerative Medicine, East Hospital, Tongji University, Shanghai, China
- *Correspondence: Wenjie Tang, ; Qingbin Ni,
| |
Collapse
|
7
|
Acetyl-11-Keto- β-Boswellic Acid (AKBA) Prevents Lipopolysaccharide-Induced Inflammation and Cytotoxicity on H9C2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2620710. [PMID: 35399644 PMCID: PMC8986374 DOI: 10.1155/2022/2620710] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/15/2022] [Indexed: 12/30/2022]
Abstract
Acetyl-11-keto-beta-boswellic acid (AKBA), the major component of Boswellia serrata, exhibits anti-inflammatory activities. This in vitro study investigated the protective effects of AKBA against lipopolysaccharide (LPS)-induced cardiac dysfunction. In this study, the H9C2 cardiomyocytes were pretreated with AKBA (2.5, 5, and 10 μM for 24 h), and then cotreated with LPS for another 24 h. The MTT assay, ELISA test kits, and quantitative real-time PCR analysis assessed the cell viability, levels of proinflammatory factors (IL-β, IL-6, TNF- α, and PGE2), and the gene expression of IL-β, IL-6, TNF- α, iNOS, and COX-2, respectively. The nitric oxide (NO) and thiol levels were also measured using a biochemical assay. The results indicated that LPS exposure markedly reduced cell viability and total thiol content, but increased the inflammatory cytokines, NO metabolites, and gene expression of proinflammatory mediators in H9C2 cells. AKBA pretreatment significantly altered the mentioned factors induced by LPS. Our results demonstrated that AKBA might be a promising therapeutic agent for treating sepsis-related cardiac dysfunction in the future.
Collapse
|
8
|
Song B, Wang XX, Yang HY, Kong LT, Sun HY. MiR-141 attenuates sepsis-induced cardiomyopathy by targeting DAPK1. Hum Exp Toxicol 2021; 40:S137-S149. [PMID: 34289745 DOI: 10.1177/09603271211033768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To discuss the possible effects of microRNA-141 (miR-141) in sepsis-induced cardiomyopathy (SIC) via targeting death-associated protein kinase 1 (DAPK1). METHODS An SIC mouse model was constructed by abdominal injection of lipopolysaccharide (LPS) and divided into control, LPS, LPS + pre-miR-141, and LPS + anti-miR-141 groups. Hemodynamic indicators and heart function indexes of mice were detected. ELISA was used to determine the serum levels of inflammatory cytokines, while TUNEL staining to observe the apoptosis of myocardial cells of mice, as well as qRT-PCR and Western blotting to clarify the expression of miR-141 and DAPK1. Lastly, in vitro experiment was also conducted on the primary neonatal rat ventricular cardiomyocytes (NRVCMs) to validate the results. RESULTS Mice in the LPS group, as compared to the control group, had lower left ventricular ejection fraction, left ventricular fractional shortening, left ventricular systolic pressure, and ±dp/dt, but a higher left ventricular end-diastolic pressure, while the serum expression of IL-1β, IL-6, TNF-α, and cTn-T was up-regulated evidently with the increased apoptotic index of myocardial tissues. However, miR-141 and Bcl-2/Bax were down-regulated with elevated DAPK1 and cleaved caspase-3. The above changes were ameliorated in mice from the LPS + pre-miR-141 group relative to the LPS group, while those in the LPS + anti-miR-141 group were further deteriorated. In vitro experiment showed that miR-141 overexpression could reduce the apoptosis of LPS-induced NRVCMs and the levels of inflammatory cytokines with the increased cell viability. CONCLUSION MiR-141 could decrease inflammatory response and reduce myocardial cell apoptosis by targeting DAPK1, thereby playing the promising protective role in SIC.
Collapse
Affiliation(s)
- Bo Song
- Department of Emergency, 519688YanTaiShan Hospital, YanTai, China
| | - Xin-Xiang Wang
- Yantai Chefoo Area Directly Subordinate Organ Hospital, Yantai, China
| | - Hai-Yan Yang
- Department of Emergency, 519688YanTaiShan Hospital, YanTai, China
| | - Ling-Ting Kong
- Department of Emergency, 519688YanTaiShan Hospital, YanTai, China
| | - Hong-Yan Sun
- Department of Endocrinology, 519688YanTaiShan Hospital, YanTai, China
| |
Collapse
|
9
|
Yang YP, Zhao JQ, Gao HB, Li JJ, Li XL, Niu XL, Lei YH, Li X. Tannic acid alleviates lipopolysaccharide‑induced H9C2 cell apoptosis by suppressing reactive oxygen species‑mediated endoplasmic reticulum stress. Mol Med Rep 2021; 24:535. [PMID: 34080663 PMCID: PMC8170226 DOI: 10.3892/mmr.2021.12174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/30/2021] [Indexed: 01/08/2023] Open
Abstract
Sepsis‑induced myocardial dysfunction is one of the features of multiple organ dysfunction in sepsis, which is associated with extremely high mortality and is characterized by impaired myocardial compliance. To date, there are few effective treatment options available to cure sepsis. Tannic acid (TA) is reportedly protective during sepsis; however, the underlying mechanisms by which TA protects against septic heart injury remain elusive. The present study investigated the potential effects and underlying mechanisms of TA in alleviating lipopolysaccharide (LPS)‑induced H9C2 cardiomyocyte cell apoptosis. H9C2 cells were treated with LPS (15 µg/ml), TA (10 µM) and TA + LPS; control cells were treated with medium only. Apoptosis was measured using flow cytometry, reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analysis. Additionally, the levels of cellular reactive oxygen species (ROS), malondialdehyde and nicotinamide adenine dinucleotide phosphate were evaluated. Western blotting and RT‑qPCR were also employed to detect the expression levels of endoplasmic reticulum (ER) stress‑associated functional proteins. The present findings demonstrated that TA reduced the degree of LPS‑induced H9C2 cell injury, including inhibition of ROS production and ER stress (ERS)‑associated apoptosis. ERS‑associated functional proteins, including activating transcription factor 6, protein kinase‑like ER kinase, inositol‑requiring enzyme 1, spliced X box‑binding protein 1 and C/EBP‑homologous protein were suppressed in response to TA treatment. Furthermore, the expression levels of ERS‑associated apoptotic proteins, including c‑Jun N‑terminal kinase, Bax, cytochrome c, caspase‑3, caspase‑12 and caspase‑9 were reduced following treatment with TA. Additionally, the protective effects of TA on LPS‑induced H9C2 cells were partially inhibited following treatment with the ROS inhibitor N‑acetylcysteine, which demonstrated that ROS mediated ERS‑associated apoptosis and TA was able to decrease ROS‑mediated ERS‑associated apoptosis. Collectively, the present findings demonstrated that the protective effects of TA against LPS‑induced H9C2 cell apoptosis may be associated with the amelioration of ROS‑mediated ERS. These findings may assist the development of potential novel therapeutic methods to inhibit the progression of myocardial cell injury.
Collapse
Affiliation(s)
- Yan-Ping Yang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jie-Qiong Zhao
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Hai-Bo Gao
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jin-Jing Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiao-Li Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiao-Lin Niu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yong-Hong Lei
- Department of Plastic Surgery, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Xue Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
10
|
Chen YH, Teng X, Hu ZJ, Tian DY, Jin S, Wu YM. Hydrogen Sulfide Attenuated Sepsis-Induced Myocardial Dysfunction Through TLR4 Pathway and Endoplasmic Reticulum Stress. Front Physiol 2021; 12:653601. [PMID: 34177611 PMCID: PMC8220204 DOI: 10.3389/fphys.2021.653601] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Aims: We examined the change in endogenous hydrogen sulfide (H2S) production and its role in sepsis-induced myocardial dysfunction (SIMD). Results: Significant elevations in plasma cardiac troponin I (cTnI), creatine kinase (CK), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) were noted in SIMD patients, whereas left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), and plasma H2S were significantly decreased relative to those in the controls. Plasma H2S was linearly related to LVEF and LVFS. Subsequently, an SIMD model was developed in mice by injecting lipopolysaccharide (LPS), and NaHS, an H2S donor, was used to elucidate the pathophysiological role of H2S. The mice showed decreased ventricular function and increased levels of TNF-α, IL-1β, cTnI, and CK after LPS injections. Toll-like receptor (TLR) 4 protein and endoplasmic reticulum stress (ERS) proteins were over expressed in the SIMD mice. All of the parameters above showed more noticeable variations in cystathionine γ-lyase knockout mice relative to those in wild type mice. The administration of NaHS could improve ventricular function and attenuate inflammation and ERS in the heart. Conclusion: Overall, these findings indicated that endogenous H2S deficiency contributed to SIMD and exogenous H2S ameliorated sepsis-induced myocardial dysfunction by suppressing inflammation and ERS via inhibition of the TLR4 pathway.
Collapse
Affiliation(s)
- Yu-Hong Chen
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Department of Critical Care Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Zhen-Jie Hu
- Department of Critical Care Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan-Yang Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yu-Ming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China.,Key Laboratory of Vascular Medicine of Hebei Province, Shijiazhuang, China
| |
Collapse
|
11
|
Ohta S. Direct Targets and Subsequent Pathways for Molecular Hydrogen to Exert Multiple Functions: Focusing on Interventions in Radical Reactions. Curr Pharm Des 2021; 27:595-609. [PMID: 32767925 DOI: 10.2174/1381612826666200806101137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/27/2020] [Indexed: 01/10/2023]
Abstract
Molecular hydrogen (H2) was long regarded as non-functional in mammalian cells. We overturned the concept by demonstrating that H2 exhibits antioxidant effects and protects cells against oxidative stress. Subsequently, it has been revealed that H2 has multiple functions in addition to antioxidant effects, including antiinflammatory, anti-allergic functions, and as cell death and autophagy regulation. Additionally, H2 stimulates energy metabolism. As H2 does not readily react with most biomolecules without a catalyst, it is essential to identify the primary targets with which H2 reacts or interacts directly. As a first event, H2 may react directly with strong oxidants, such as hydroxyl radicals (•OH) in vivo. This review addresses the key issues related to this in vivo reaction. •OH may have a physiological role because it triggers a free radical chain reaction and may be involved in the regulation of Ca2+- or mitochondrial ATP-dependent K+-channeling. In the subsequent pathway, H2 suppressed a free radical chain reaction, leading to decreases in lipid peroxide and its end products. Derived from the peroxides, 4-hydroxy-2-nonenal functions as a mediator that up-regulates multiple functional PGC-1α. As the other direct target in vitro and in vivo, H2 intervenes in the free radical chain reaction to modify oxidized phospholipids, which may act as an antagonist of Ca2+-channels. The resulting suppression of Ca2+-signaling inactivates multiple functional NFAT and CREB transcription factors, which may explain H2 multi-functionality. This review also addresses the involvement of NFAT in the beneficial role of H2 in COVID-19, Alzheimer's disease and advanced cancer. We discuss some unsolved issues of H2 action on lipopolysaccharide signaling, MAPK and NF-κB pathways and the Nrf2 paradox. Finally, as a novel idea for the direct targeting of H2, this review introduces the possibility that H2 causes structural changes in proteins via hydrate water changes.
Collapse
Affiliation(s)
- Shigeo Ohta
- Department of Neurology Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| |
Collapse
|
12
|
Zhang Y, Bi M, Chen Z, Dai M, Zhou G, Hu Y, Yang H, Guan W. Hydrogen gas alleviates acute alcohol-induced liver injury by inhibiting JNK activation. Exp Ther Med 2021; 21:453. [PMID: 33767761 PMCID: PMC7976433 DOI: 10.3892/etm.2021.9884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/08/2020] [Indexed: 11/09/2022] Open
Abstract
Binge alcohol drinking is fast becoming a global health concern, with the liver among the first organ involved and the one afflicted with the greatest degree of injury. Oxidative stress, alterations in hepatic metabolism, immunity and inflammation have all been reported to contribute to the development of alcoholic liver disease (ALD). Hydrogen gas (H2) serves a key role in the modulation of hepatic redox, immune and inflammatory homeostasis. However, the effects of treatment using intraperitoneal injection of H2 on ALD remain unexplored. Therefore, the aim of the present study was to investigate the effects and underlying mechanism of intraperitoneal injection of H2 on acute alcohol-induced liver injury in a mouse model. H2 was administered by daily intraperitoneal injections (1.0 ml/100 g) for 4 days. On day 4, the mice received H2 after fasting for 5.5 h. After 30 min, the mice were administered with 33% (v/v) ethanol at a cumulative dose of 4.5 g/kg body weight by four equally divided gavages at 20-min intervals. Blood and liver tissues were collected at 16 h after the first ethanol gavage. Subsequently, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride and total cholesterol (TC) levels were analyzed using an Automatic Clinical Analyzer. Hepatic JNK activity and GAPDH levels were examined by western blotting. It was observed that acute ethanol gavage induced liver injury, as indicated by significantly increased serum ALT and AST levels, which were effectively decreased by H2 at 16 h after the first ethanol gavage. In addition, H2 treatment reduced serum TC levels in the Alcohol+H2 group when compared with those in Alcohol group. Mechanistically, H2 attenuated hepatic JNK phosphorylation induced by acute ethanol gavage. Therefore, the results of the present study demonstrated that treatment with exogenous H2 by intraperitoneal injection may alleviate acute alcohol-induced liver injury by inhibiting hepatic JNK activation, which may represent a novel therapeutic strategy for ALD.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Mingmin Bi
- Department of Otorhinolaryngology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zifeng Chen
- Biofeedback Laboratory, Xinhua College of Sun Yat-sen University, Guangzhou, Guangdong 510520, P.R. China.,Department of Biomedical Engineering, Xinhua College of Sun Yat-sen University, Guangzhou, Guangdong 510520, P.R. China
| | - Min Dai
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ge Zhou
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuxuan Hu
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Weibing Guan
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
13
|
Zhang Y, Zhang J, Xu K, Chen Z, Xu X, Xu J, Zheng S, Dai M, Yang H. Helium Protects Against Lipopolysaccharide-Induced Cardiac Dysfunction in Mice via Suppressing Toll-Like Receptor 4-Nuclear Factor κB-Tumor Necrosis Factor-Alpha/ Interleukin-18 Signaling. CHINESE J PHYSIOL 2021; 63:276-285. [PMID: 33380612 DOI: 10.4103/cjp.cjp_66_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The nonanesthetic noble gas helium (He) can protect many organs against ischemia and reperfusion injury, such as liver and heart. However, the role of He on cardiac dysfunction during sepsis is not clear. In this study, we established a lipopolysaccharide (LPS)-induced cardiac dysfunction mouse model to examine the influence of He on the impaired cardiac function, and further investigated the possible innate immune mechanisms that may be involved. LPS induced left ventricular dysfunction and cavity enlargement, as indicated by decreased percent ejection fraction, percent fractional shortening, left ventricular anterior wall thickness in systole, and left ventricular posterior wall thickness in systole, while increased left ventricular end-systolic diameter and left ventricular end-systolic volume. He improved the impaired left ventricular function and cavity enlargement in a dose-dependent manner, and it was beneficial at 1.0 mL/100 g. Mechanistically, He inhibited toll-like receptor 4 (TLR4) expression, reduced the phosphorylation of nuclear factor κB (NF-κB), and subsequently alleviated tumor necrosis factor-alpha (TNF-α) and interleukin-18 (IL-18) expression in heart. Therefore, He protects against LPS-induced cardiac dysfunction in mice partially via inhibiting myocardial TLR4-NF-κB-TNF-α/IL-18 signaling.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital; Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiongshan Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital; Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kangquan Xu
- Biofeedback Laboratory; School of Biomedical Engineering, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Zifeng Chen
- Biofeedback Laboratory; School of Biomedical Engineering, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Xiaodan Xu
- Biofeedback Laboratory, Xinhua College of Sun Yat-sen University; Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jingting Xu
- Biofeedback Laboratory; School of Biomedical Engineering, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Dai
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital; Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital; Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Zhang Y, Liu H, Xu J, Zheng S, Zhou L. Hydrogen Gas: A Novel Type of Antioxidant in Modulating Sexual Organs Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8844346. [PMID: 33510842 PMCID: PMC7826209 DOI: 10.1155/2021/8844346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 02/02/2023]
Abstract
Sex is a science of cutting edge but bathed in mystery. Coitus or sexual intercourse, which is at the core of sexual activities, requires healthy and functioning vessels to supply the pelvic region, thus contributing to clitoris erection and vaginal lubrication in female and penile erection in male. It is well known that nitric oxide (NO) is the main gas mediator of penile and clitoris erection. In addition, the lightest and diffusible gas molecule hydrogen (H2) has been shown to improve erectile dysfunction (ED), testis injuries, sperm motility in male, preserve ovarian function, protect against uterine inflammation, preeclampsia, and breast cancer in female. Mechanistically, H2 has strong abilities to attenuate excessive oxidative stress by selectively reducing cytotoxic oxygen radicals, modulate immunity and inflammation, and inhibit injuries-induced cell death. Therefore, H2 is a novel bioactive gas molecule involved in modulating sexual organs homeostasis.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haimei Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinwen Xu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lequan Zhou
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Gupta S, Sharma A, Sharma S, Dhanawat M, Munjal K. Combination effect of Spirulina fusiformis with rutin or chlorogenic acid in lipopolysaccharide-induced septic cardiac inflammation in experimental diabetic rat model. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_179_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Effects of long-term hydrogen intervention on the physiological function of rats. Sci Rep 2020; 10:18509. [PMID: 33116163 PMCID: PMC7595097 DOI: 10.1038/s41598-020-75492-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
The potential therapeutic effects of molecular hydrogen (H2) have now been confirmed in various human and animal-disease models. However, the effects of H2 on the physiological function in a normal state have been largely neglected. Hydrogen-rich water (HRW) intake and hydrogen inhalation (HI) are the most common used methods for hydrogen administration, the difference in the effects between HRW intake and HI remains elusive. In the present study, the body weight and 13 serum biochemical parameters were monitored during the six-month hydrogen intervention, all these parameters were significantly altered by oral intake of HRW or HI. Among the 13 parameters, the most striking alterations induced by hydrogen treatment were observed in serum myocardial enzymes spectrum. The results also showed that the changes in these parameters occurred at different time points, and the alterations in most of the parameters were much more significant in HI than HRW. The results of this study provides the basic data for the mechanism research and application of molecular hydrogen in the future.
Collapse
|
17
|
Hydrogen: A Novel Option in Human Disease Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8384742. [PMID: 32963703 PMCID: PMC7495244 DOI: 10.1155/2020/8384742] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/06/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
H2 has shown anti-inflammatory and antioxidant ability in many clinical trials, and its application is recommended in the latest Chinese novel coronavirus pneumonia (NCP) treatment guidelines. Clinical experiments have revealed the surprising finding that H2 gas may protect the lungs and extrapulmonary organs from pathological stimuli in NCP patients. The potential mechanisms underlying the action of H2 gas are not clear. H2 gas may regulate the anti-inflammatory and antioxidant activity, mitochondrial energy metabolism, endoplasmic reticulum stress, the immune system, and cell death (apoptosis, autophagy, pyroptosis, ferroptosis, and circadian clock, among others) and has therapeutic potential for many systemic diseases. This paper reviews the basic research and the latest clinical applications of H2 gas in multiorgan system diseases to establish strategies for the clinical treatment for various diseases.
Collapse
|
18
|
Si-Wu-Tang Alleviates Nonalcoholic Fatty Liver Disease via Blocking TLR4-JNK and Caspase-8-GSDMD Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8786424. [PMID: 32849904 PMCID: PMC7439165 DOI: 10.1155/2020/8786424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) has high global prevalence; however, the treatments of NAFLD are limited due to lack of approved drugs. Methods Mice were randomly assigned into three groups: Control group, NAFLD group, NAFLD plus Si-Wu-Tang group. A NAFLD mice model was established by feeding with a methionine- and choline-deficient (MCD) diet for four weeks. Si-Wu-Tang was given orally by gastric gavage at the beginning of 3rd week, and it lasted for two weeks. The treatment effects of Si-Wu-Tang were confirmed by examining the change of body weight, serum alanine aminotransferase (ALT) and aspartate transaminase (AST) levels, Oil Red O staining, and hematoxylin and eosin (H&E) staining of the liver samples and accompanied by steatosis grade scores. The expression and activation of the possible signaling proteins involved in the pathogenesis of NAFLD were determined by western blotting. Results Mice fed with four weeks of MCD diet displayed elevated serum levels of ALT and AST, while there was decreased body weight. The hepatic Oil Red O staining and H&E staining showed severe liver steatosis with high steatosis grade scores. All these can be improved by treating with Si-Wu-Tang for two weeks. Mechanistically, the increased hepatic TLR4 expression and its downstream JNK phosphorylation induced by MCD diet were suppressed by Si-Wu-Tang. Moreover, the upregulations of Caspase-8, gasdermin D (GSDMD), and cleaved-GSDMD in liver mediated by MCD diet were all inhibited by Si-Wu-Tang. Conclusions Treatment with Si-Wu-Tang improves MCD diet-induced NAFLD in part via blocking TLR4-JNK and Caspase-8-GSDMD signaling pathways, suggesting that Si-Wu-Tang has potential for clinical application in treating NAFLD.
Collapse
|
19
|
Zhang Y, Xu J, Yang H. Hydrogen: An Endogenous Regulator of Liver Homeostasis. Front Pharmacol 2020; 11:877. [PMID: 32595504 PMCID: PMC7301907 DOI: 10.3389/fphar.2020.00877] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/27/2020] [Indexed: 01/10/2023] Open
Abstract
Basic and clinical studies have shown that hydrogen (H2), the lightest gas in the air, has significant biological effects of anti-oxidation, anti-inflammation, and anti-apoptosis. The mammalian cells have no abilities to produce H2 due to lack of the expression of hydrogenase. The endogenous H2 in human body is mainly produced by anaerobic bacteria, such as Firmicutes and Bacteroides, in gut and other organs through the reversible oxidation reaction of 2 H+ + 2 e- ⇌ H2. Supplement of exogenous H2 can improve many kinds of liver injuries, modulate glucose and lipids metabolism in animal models or in human beings. Moreover, hepatic glycogen has strong ability to accumulate H2, thus, among the organs examined, liver has the highest concentration of H2 after supplement of exogenous H2 by various strategies in vivo. The inadequate production of endogenous H2 play essential roles in brain, heart, and liver disorders, while enhanced endogenous H2 production may improve hepatitis, hepatic ischemia and reperfusion injury, liver regeneration, and hepatic steatosis. Therefore, the endogenous H2 may play essential roles in maintaining liver homeostasis.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jingting Xu
- Biofeedback Laboratory, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Gao S, Li H, Xie H, Wu S, Yuan Y, Chu L, Sun S, Yang H, Wu L, Bai Y, Zhou Q, Wang X, Zhan B, Cui H, Yang X. Therapeutic efficacy of Schistosoma japonicum cystatin on sepsis-induced cardiomyopathy in a mouse model. Parasit Vectors 2020; 13:260. [PMID: 32423469 PMCID: PMC7236195 DOI: 10.1186/s13071-020-04104-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Myocardial dysfunction is one of the most common complications of multiple organ failure in septic shock and significantly increases mortality in patients with sepsis. Although many studies having confirmed that helminth-derived proteins have strong immunomodulatory functions and could treat inflammatory diseases, there is no report on the therapeutic effect of Schistosoma japonicum-produced cystatin (Sj-Cys) on sepsis-induced cardiac dysfunction. METHODS A model of sepsis-induced myocardial injury was established by cecal ligation and puncture (CLP) in mice. Upon CLP operation, each mouse was intraperitoneally treated with 10 µg of recombinant Sj-Cys (rSj-Cys). Twelve hours after CLP, the systolic and diastolic functions of the left ventricular were examined by echocardiography. The levels of myoglobin (Mb), cardiac troponin I (cTnI), N-terminal pro-Brain Natriuretic peptide (NT-proBNP) in sera, and the activity of myeloperoxidase (MPO) in cardiac tissues were examined as biomarkers for heart injury. The heart tissue was collected for checking pathological changes, macrophages and pro-inflammatory cytokine levels. To address the signaling pathway involved in the anti-inflammatory effects of rSj-Cys, myeloid differentiation factor 88 (MyD88) was determined in heart tissue of mice with sepsis and LPS-stimulated H9C2 cardiomyocytes. In addition, the therapeutic effects of rSj-Cys on LPS-induced cardiomyocyte apoptosis were also detected. The levels of M1 biomarker iNOS and M2 biomarker Arg-1 were detected in heart tissue. The pro-inflammatory cytokines TNF-α and IL-6, and regulatory cytokines IL-10 and TGF-β were measured in sera and their mRNA levels in heart tissue of rSj-Cys-treated mice. RESULTS After rSj-Cys treatment, the sepsis-induced heart malfunction was largely improved. The inflammation and injury of heart tissue were significantly alleviated, characterized as significantly decreased infiltration of inflammatory cells in cardiac tissues and fiber swelling, reduced levels of Mb, cTnI and NT-proBNP in sera, and MPO activity in heart tissue. The therapeutic efficacy of rSj-Cys is associated with downregulated pro-inflammatory cytokines (TNF-α and IL-6) and upregulated regulatory inflammatory cytokines (IL-10 and TGF-β), possibly through inhibiting the LPS-MyD88 signal pathway. CONCLUSIONS RSj-Cys significantly reduced sepsis-induced cardiomyopathy and could be considered as a potential therapeutic agent for the prevention and treatment of sepsis associated cardiac dysfunction.
Collapse
Affiliation(s)
- Shifang Gao
- Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China.,Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Huihui Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China.,Basic Medical College of Bengbu Medical College, Bengbu, 233000, China
| | - Hong Xie
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Shili Wu
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Yuan Yuan
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China.,Basic Medical College of Bengbu Medical College, Bengbu, 233000, China
| | - Liang Chu
- Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Siying Sun
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Huijuan Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Lingqin Wu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Yongsheng Bai
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Qiao Zhou
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Xin Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hu Cui
- Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China.
| | - Xiaodi Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China. .,Basic Medical College of Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
21
|
Lin H, Wang W, Lee M, Meng Q, Ren H. Current Status of Septic Cardiomyopathy: Basic Science and Clinical Progress. Front Pharmacol 2020; 11:210. [PMID: 32194424 PMCID: PMC7062914 DOI: 10.3389/fphar.2020.00210] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/14/2020] [Indexed: 12/27/2022] Open
Abstract
Septic cardiomyopathy (SCM) is a complication that is sepsis-associated cardiovascular failure. In the last few decades, there is progress in diagnosis and treatment despite the lack of consistent diagnostic criteria. According to current studies, several hypotheses about pathogenic mechanisms have been revealed to elucidate the pathophysiological characteristics of SCM. The objective of this manuscript is to review literature from the past 5 years to provide an overview of current knowledge on pathogenesis, diagnosis and treatment in SCM.
Collapse
Affiliation(s)
- Huan Lin
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Wenting Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | | | - Qinghe Meng
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Hongsheng Ren
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|