1
|
Corpas M, Siddiqui MK, Soremekun O, Mathur R, Gill D, Fatumo S. Addressing Ancestry and Sex Bias in Pharmacogenomics. Annu Rev Pharmacol Toxicol 2024; 64:53-64. [PMID: 37450899 DOI: 10.1146/annurev-pharmtox-030823-111731] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The association of an individual's genetic makeup with their response to drugs is referred to as pharmacogenomics. By understanding the relationship between genetic variants and drug efficacy or toxicity, we are able to optimize pharmacological therapy according to an individual's genotype. Pharmacogenomics research has historically suffered from bias and underrepresentation of people from certain ancestry groups and of the female sex. These biases can arise from factors such as drugs and indications studied, selection of study participants, and methods used to collect and analyze data. To examine the representation of biogeographical populations in pharmacogenomic data sets, we describe individuals involved in gene-drug response studies from PharmGKB, a leading repository of drug-gene annotations, and showcaseCYP2D6, a gene that metabolizes approximately 25% of all prescribed drugs. We also show how the historical underrepresentation of females in clinical trials has led to significantly more adverse drug reactions in females than in males.
Collapse
Affiliation(s)
- Manuel Corpas
- School of Life Sciences, University of Westminster, London, United Kingdom
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom
| | - Moneeza K Siddiqui
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Opeyemi Soremekun
- African Computational Genomics (TACG) Research Group, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Rohini Mathur
- Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Segun Fatumo
- African Computational Genomics (TACG) Research Group, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom;
| |
Collapse
|
2
|
Liu TY, Hsu HY, You YS, Hsieh YW, Lin TC, Peng CW, Huang HY, Chang SS, Tsai FJ. Efficacy of Warfarin Therapy Guided by Pharmacogenetics: A Real-world Investigation Among Han Taiwanese. Clin Ther 2023; 45:662-670. [PMID: 37301690 DOI: 10.1016/j.clinthera.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE The anticoagulation activity of warfarin in populations with CYP2C9, VKORC1, and CYP4F2 variants differs between individuals and is correlated with poor international normalized ratio (INR) control. Pharmacogenetics-guided warfarin dosing has been successfully developed for patients with genetic variations in recent years. However, few real-world data have been used to investigate the INR and warfarin dosage and the time to target INR. This study examined the largest collection of genetic and clinical real-world data related to warfarin to provide further evidence supporting the benefits of pharmacogenetics in clinical outcomes. METHODS We retrieved a total of 69,610 INR-warfarin records after the index date from 2,613 patients in the China Medical University Hospital database between January 2003 and December 2019. Each INR reading was obtained from the latest laboratory data after the hospital visit date. Patients with a history of malignant neoplasms or pregnancy before the index date were excluded, as were patients without data on INR measurements after the fifth day of prescription, genetic information, or gender variables. The primary outcomes were the INR and warfarin dosage during days 7, 14, 28, 56, and 84 after prescription. The secondary outcome was the time required to reach the INR ranges of 1.5 to 3.0 and >4.0. FINDINGS A total of 59,643 INR-warfarin records from 2188 patients were retrieved. The average INR was higher for homozygous carriers of the minor allele at CYP2C9 and VKORC1 during the first 7 days (1.83 [1.03] [CYP2C9*1] and 2.46 [1.44] [CYP2C9*3], P < 0.001; 1.39 [0.36] [rs9923231 G/G], 1.55 [0.79] [rs9923231 G/A], and 1.96 [1.13] [rs9923231 A/A], P < 0.001) than for the wild-type allele. These patients with variants required lower warfarin doses than those with the wild-type allele during the first 28 days. CYP4F2 variant patients seemed to require higher doses of warfarin than those in the wild-type group; however, no significant difference in the average INR was observed (1.95 [1.14] [homozygous V433 carriers], 1.78 [0.98] [heterozygous V433M carriers], and 1.66 [0.91] [homozygous M433 carriers], P = 0.016). IMPLICATIONS Our study indicates that genetic variants in the Han population may enhance warfarin responsiveness, which holds clinical relevance. An increased warfarin dosage was not linked to a shorter time to therapeutic INR between CYP4F2 variant patients and those with a wild-type allele. Assessing CYP2C9 and VKORC1 genetic polymorphisms before initiating warfarin treatment in real-world practice is essential for potentially vulnerable patients and is likely to optimize therapeutic dosing.
Collapse
Affiliation(s)
- Ting-Yuan Liu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Hsing-Yu Hsu
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan.
| | - Ying-Shu You
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Yow-Wen Hsieh
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan.
| | - Tzu-Ching Lin
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan.
| | - Chun-Wei Peng
- Artificial Intelligence and Data Science, National Chung Hsing University, Taichung, Taiwan.
| | - Hsin-Yi Huang
- Division of Cardiovascular Medicine, China Medical University Hospital, Taichung, Taiwan.
| | - Shih-Sheng Chang
- Division of Cardiovascular Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Division of Pediatric Genetics, Children's Hospital of China Medical University, Taichung, Taiwan; Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan.
| |
Collapse
|
3
|
Lim SYM, Al Bishtawi B, Lim W. Role of Cytochrome P450 2C9 in COVID-19 Treatment: Current Status and Future Directions. Eur J Drug Metab Pharmacokinet 2023; 48:221-240. [PMID: 37093458 PMCID: PMC10123480 DOI: 10.1007/s13318-023-00826-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
The major human liver drug metabolising cytochrome P450 (CYP) enzymes are downregulated during inflammation and infectious disease state, especially during coronavirus disease 2019 (COVID-19) infection. The influx of proinflammatory cytokines, known as a 'cytokine storm', during severe COVID-19 leads to the downregulation of CYPs and triggers new cytokine release, which further dampens CYP expression. Impaired drug metabolism, along with the inevitable co-administration of drugs or 'combination therapy' in patients with COVID-19 with various comorbidities, could cause drug-drug interactions, thus worsening the disease condition. Genetic variability or polymorphism in CYP2C9 across different ethnicities could contribute to COVID-19 susceptibility. A number of drugs used in patients with COVID-19 are inducers or inhibitors of, or are metabolised by, CYP2C9, and co-administration might cause pharmacokinetic and pharmacodynamic interactions. It is also worth mentioning that some of the COVID-19 drug interactions are due to altered activity of other CYPs including CYP3A4. Isoniazid/rifampin for COVID-19 and tuberculosis co-infection; lopinavir/ritonavir and cobicistat/remdesivir combination therapy; or multi-drug therapy including ivermectin, azithromycin, montelukast and acetylsalicylic acid, known as TNR4 therapy, all improved recovery in patients with COVID-19. However, a combination of CYP2C9 inducers, inhibitors or both, and plausibly different CYP isoforms could lead to treatment failure, hepatotoxicity or serious side effects including thromboembolism or bleeding, as observed in the combined use of azithromycin/warfarin. Further, herbs that are CYP2C9 inducers and inhibitors, showed anti-COVID-19 properties, and in silico predictions postulated that phytochemical compounds could inhibit SARS-CoV-2 virus particles. COVID-19 vaccines elicit immune responses that activate cytokine release, which in turn suppresses CYP expression that could be the source of compromised CYP2C9 drug metabolism and the subsequent drug-drug interaction. Future studies are recommended to determine CYP regulation in COVID-19, while recognising the involvement of CYP2C9 and possibly utilising CYP2C9 as a target gene to tackle the ever-mutating SARS-CoV-2.
Collapse
Affiliation(s)
- Sharoen Yu Ming Lim
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia.
| | - Basel Al Bishtawi
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Willone Lim
- Faculty of Engineering, Computing and Science, Swinburne University of Technology, 93350, Kuching, Malaysia
| |
Collapse
|
4
|
Treatment of rheumatoid arthritis with conventional, targeted and biological disease-modifying antirheumatic drugs in the setting of liver injury and non-alcoholic fatty liver disease. Rheumatol Int 2022; 42:1665-1679. [PMID: 35604436 DOI: 10.1007/s00296-022-05143-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
Increased incidence of liver diseases emphasizes greater caution in prescribing antirheumatic drugs due to their hepatotoxicity. A transient elevation of transaminases to autoimmune hepatitis and acute liver failure has been described. For every 10 cases of alanine aminotransferase (ALT) elevation in a clinical trial, it is estimated that one case of more severe liver injury will develop once the investigated drug is widely available. Biologic disease-modifying antirheumatic drugs (bDMARDs) and targeted synthetic (tsDMARDs) are less likely to cause liver damage. However, various manifestations, from a transient elevation of transaminases to autoimmune hepatitis and acute liver failure, have been described. Research on non-alcoholic fatty liver disease (NAFLD) has provided insight into a pre-existing liver disease that may be worsen by medication. Diabetes and obesity could be an additional burden in drug-induced liver injury (DILI). In the intertwining of the inflammatory and metabolic pathways, the most important cytokines are IL-6 and TNF alpha, which are also the cornerstone of biological treatment for rheumatoid arthritis. This narrative review evaluates the complexity and prevention of DILI in RA and treatment options involving biological therapy and tsDMARDs.
Collapse
|
5
|
Fekete F, Mangó K, Déri M, Incze E, Minus A, Monostory K. Impact of genetic and non-genetic factors on hepatic CYP2C9 expression and activity in Hungarian subjects. Sci Rep 2021; 11:17081. [PMID: 34429480 PMCID: PMC8384867 DOI: 10.1038/s41598-021-96590-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
CYP2C9, one of the most abundant hepatic cytochrome P450 enzymes, is involved in metabolism of 15–20% of clinically important drugs (warfarin, sulfonylureas, phenytoin, non-steroid anti-inflammatory drugs). To avoid adverse events and/or impaired drug-response, CYP2C9 pharmacogenetic testing is recommended. The impact of CYP2C9 polymorphic alleles (CYP2C9*2, CYP2C9*3) and phenoconverting non-genetic factors on CYP2C9 function and expression was investigated in liver tissues from Caucasian subjects (N = 164). The presence of CYP2C9*3 allele was associated with CYP2C9 functional impairment, and CYP2C9*2 influenced tolbutamide 4′-hydroxylase activity only in subjects with two polymorphic alleles, whereas the contribution of CYP2C8*3 was not confirmed. In addition to CYP2C9 genetic polymorphisms, non-genetic factors (co-medication with CYP2C9-specific inhibitors/inducers and non-specific factors including amoxicillin + clavulanic acid therapy or chronic alcohol consumption) contributed to the prediction of hepatic CYP2C9 activity; however, a CYP2C9 genotype–phenotype mismatch still existed in 32.6% of the subjects. Substantial variability in CYP2C9 mRNA levels, irrespective of CYP2C9 genotype, was demonstrated; however, CYP2C9 induction and non-specific non-genetic factors potentially resulting in liver injury appeared to modify CYP2C9 expression. In conclusion, complex implementation of CYP2C9 genotype and non-genetic factors for the most accurate estimation of hepatic CYP2C9 activity may improve efficiency and safety of medication with CYP2C9 substrate drugs in clinical practice.
Collapse
Affiliation(s)
- Ferenc Fekete
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok 2, Budapest, 1117, Hungary
| | - Katalin Mangó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok 2, Budapest, 1117, Hungary
| | - Máté Déri
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok 2, Budapest, 1117, Hungary
| | - Evelyn Incze
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok 2, Budapest, 1117, Hungary
| | - Annamária Minus
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok 2, Budapest, 1117, Hungary
| | - Katalin Monostory
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok 2, Budapest, 1117, Hungary.
| |
Collapse
|
6
|
Cao H, Jiang S, Lv M, Wu T, Chen W, Zhang J. Effectiveness of the Alfalfa App in Warfarin Therapy Management for Patients Undergoing Venous Thrombosis Prevention and Treatment: Cohort Study. JMIR Mhealth Uhealth 2021; 9:e23332. [PMID: 33650976 PMCID: PMC7967226 DOI: 10.2196/23332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/13/2020] [Accepted: 01/08/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Over the years, the internet has enabled considerable progress in the management of chronic diseases, especially hypertension and diabetes. It also provides novel opportunities in online anticoagulation management. Nevertheless, there is insufficient evidence regarding the effectiveness of online anticoagulation management. OBJECTIVE This study explored the effectiveness and safety of warfarin management via the Alfalfa app, so as to provide evidence in support of anticoagulant management through online services. METHODS In this retrospective, observational cohort study, 824 patients were included. In the offline group, patients went to the hospital clinic for warfarin management. In the Alfalfa app group, patients reported the dose of warfarin, current international normalized ratio (INR) value, and other related information through the Alfalfa app. Physicians or pharmacists used the app to adjust the dose of warfarin and determined the time for the next blood INR testing. Patients completed INR testing by point-of-care at home or hospital. The primary outcome of the study was the percentage of time in therapeutic range (TTR). Secondary outcomes included minor and major bleeding events, thrombotic events, warfarin-related emergency department visits, hospital admissions, and high INR values. RESULTS The TTR and percentage of INR values in the range were significantly higher in the Alfalfa app group than in the offline group (79.35% vs 52.38%, P<.001; 3314/4282, 77.39% vs 2005/4202, 47.72%, P<.001, respectively). Patients managed via the Alfalfa app had lower rates of subtherapeutic (172/4282, 4.02% vs 388/4202, 9.23%; P<.001), supratherapeutic (487/4282, 11.37% vs 882/4202, 20.99%; P<.001), and extreme subtherapeutic INR values (290/4282, 6.77% vs 910/4202, 21.66%; P<.001). Additionally, the Alfalfa app group had lower incidences of major bleeding (2/425, 0.5% vs 12/399, 3.0%; P=.005), warfarin-related emergency department visits (13/425, 3.1% vs 37/399, 9.3%; P<.001), and hospital admissions (1/425, 0.2% vs 12/399, 3.0%; P=.001) compared with the offline group. However, the Alfalfa app group had a higher incidence of minor bleeding than the offline group (45/425, 10.6% vs 20/399, 5.0%; P=.003). There were similar incidences in extreme supratherapeutic INR values (19/4282, 0.44% vs 17/4202, 0.40%; P=.78) and thromboembolic events (1/425, 0.2% vs 1/399, 0.3%; P=.53) between the two groups. CONCLUSIONS Warfarin management is superior via the Alfalfa app than via offline services in terms of major bleeding events, warfarin-related emergency department visits, and hospital admissions.
Collapse
Affiliation(s)
- Hua Cao
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Cardiac Surgery, Fujian Maternity and Children Health Hospital, Fuzhou, China
| | - Shaojun Jiang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Meina Lv
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Tingting Wu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wenjun Chen
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jinhua Zhang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Salem M, Eljilany I, El-Bardissy A, Elewa H. Genetic Polymorphism Effect on Warfarin-Rifampin Interaction: A Case Report and Review of Literature. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:149-156. [PMID: 33542643 PMCID: PMC7851577 DOI: 10.2147/pgpm.s288918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/29/2020] [Indexed: 01/06/2023]
Abstract
Warfarin-rifampin interaction has been reported since the 1970s. Due to rifampin's strong induction of CYP2C9, most cases could not attain the target international normalized ratio (INR) despite warfarin dose escalation. Genetic polymorphisms determine up to 50% of warfarin dose variability. A 38-year-old woman was started on warfarin and rifampin for cerebral venous sinus thrombosis and pulmonary tuberculosis. Over six weeks, the daily warfarin dose was increased from 3 to 10 mg to attain three consecutive in-clinic therapeutic INRs. She completed three complications-free months of warfarin treatment with time in therapeutic range (TTR) of 46%. We performed retrospective genetic testing to determine the patient's CYP2C9, CYP4F2, and VKORC1 genotypes and whether they had affected the interaction outcome. The analysis revealed that the subject carries CYP2C9*3*3 and VKORC1-1639 (GA) mutations, classifying her as a slow metabolizer and, hence, highly warfarin-sensitive. This was reflected on how the case responded to a relatively lower dose than previously reported cases that did not achieve the target on warfarin daily doses up to 35 mg. This is the first report addressing the genotype effect on this interaction. Patients with genetic variants requiring low warfarin doses are more likely to respond at a feasible dose while on rifampin. Future studies to evaluate warfarin-rifampin-gene interaction are warranted.
Collapse
Affiliation(s)
- Muhammad Salem
- Department of Pharmacy, Hamad General Hospital, Doha, Qatar
| | - Islam Eljilany
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | | | - Hazem Elewa
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
8
|
Caspar SM, Schneider T, Stoll P, Meienberg J, Matyas G. Potential of whole-genome sequencing-based pharmacogenetic profiling. Pharmacogenomics 2021; 22:177-190. [PMID: 33517770 DOI: 10.2217/pgs-2020-0155] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pharmacogenetics represents a major driver of precision medicine, promising individualized drug selection and dosing. Traditionally, pharmacogenetic profiling has been performed using targeted genotyping that focuses on common/known variants. Recently, whole-genome sequencing (WGS) is emerging as a more comprehensive short-read next-generation sequencing approach, enabling both gene diagnostics and pharmacogenetic profiling, including rare/novel variants, in a single assay. Using the example of the pharmacogene CYP2D6, we demonstrate the potential of WGS-based pharmacogenetic profiling as well as emphasize the limitations of short-read next-generation sequencing. In the near future, we envision a shift toward long-read sequencing as the predominant method for gene diagnostics and pharmacogenetic profiling, providing unprecedented data quality and improving patient care.
Collapse
Affiliation(s)
- Sylvan Manuel Caspar
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland.,Department of Health Sciences & Technology, Laboratory of Translational Nutrition Biology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Timo Schneider
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland
| | - Patricia Stoll
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland
| | - Janine Meienberg
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland
| | - Gabor Matyas
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich 8952, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|