1
|
Du C, Yuan F, Zhang Z, He Z, Liu G, Hou W, Deng M, Liu C, Rong M. Spider-derived peptide LCTx-F2 suppresses ASIC channels by occupying the acidic pocket. J Biol Chem 2025; 301:108286. [PMID: 39938802 PMCID: PMC11923824 DOI: 10.1016/j.jbc.2025.108286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-evoked sodium ion channels, highly distributed in the peripheral and central nervous system. ASICs are involved in pain perception, and ASIC3 channel is presumed as the target of promising analgesics. Peptide drugs have attracted the attention of pharmaceutical developers because of their advantages such as low toxic side effects and targeted specificity. Although numbers of chemicals acting on ASICs are emerging, there are limited reports on peptide inhibitor acting on ASIC3 channel. Here, we found that spider-derived peptide LCTx-F2 suppressed the activity of ASIC3 channel in a concentration-dependent manner. By performing peptide mutation and molecular docking, we revealed the molecular mechanism of LCTx-F2 inhibiting ASIC3 channel, in which β-hairpin of LCTx-F2 penetrated the acidic pocket of the channel. Similarly, LCTx-F2 also inhibited ASIC1a channel by occupying the acidic pocket, but N terminus of the peptide sticked into the region. The bond relationship between critical residues of LCTx-F2 and the channels was uncovered by molecular docking and dynamic simulation. Thus, our findings indicated the molecular mechanism by which LCTx-F2 acts on ASIC3 and ASIC1a channels and provided a novel template of analgesic drug targeting the channels.
Collapse
Affiliation(s)
- Canwei Du
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, China.
| | - Fuchu Yuan
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhongzhe Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Ziyan He
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Guohao Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Wenqian Hou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Changjun Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - Mingqiang Rong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Bala AA, Oukkache N, Sanchez EE, Suntravat M, Galan JA. Venoms and Extracellular Vesicles: A New Frontier in Venom Biology. Toxins (Basel) 2025; 17:36. [PMID: 39852989 PMCID: PMC11769160 DOI: 10.3390/toxins17010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Extracellular vesicles (EVs) are nanoparticle-sized vesicles secreted by nearly all cell types under normal physiological conditions. In toxicological research, EVs have emerged as a crucial link between public health and multi-omics approaches, offering insights into cellular responses to disease-causing injury agents such as environmental and biological toxins, contaminants, and drugs. Notably, EVs present a unique opportunity to deepen our understanding of the pathophysiology of envenomation by natural toxins. Recent advancements in isolating and purifying EV cargo, mass spectrometry techniques, and bioinformatics have positioned EVs as potential biomarkers that could elucidate biological signaling pathways and provide valuable information on the relationship between venomous toxins, their mechanisms of action, and the effectiveness of antivenoms. Additionally, EVs hold promise as proxies for various aspects of envenomation, including the toxin dosage, biological characterization, injury progression, and prognosis during therapeutic interventions. These aspects can be explored through multi-omics technology applied to EV contents from the plasma, saliva, or urine samples of envenomated individuals, offering a comprehensive integrative approach to understanding and managing envenomation cases.
Collapse
Affiliation(s)
- Auwal A. Bala
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca 20360, Morocco;
| | - Elda E. Sanchez
- Department of Chemistry and National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (E.E.S.); (M.S.)
| | - Montamas Suntravat
- Department of Chemistry and National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (E.E.S.); (M.S.)
| | - Jacob A. Galan
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| |
Collapse
|
3
|
Guo R, Guo G, Wang A, Xu G, Lai R, Jin H. Spider-Venom Peptides: Structure, Bioactivity, Strategy, and Research Applications. Molecules 2023; 29:35. [PMID: 38202621 PMCID: PMC10779620 DOI: 10.3390/molecules29010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Spiders (Araneae), having thrived for over 300 million years, exhibit remarkable diversity, with 47,000 described species and an estimated 150,000 species in existence. Evolving with intricate venom, spiders are nature's skilled predators. While only a small fraction of spiders pose a threat to humans, their venoms contain complex compounds, holding promise as drug leads. Spider venoms primarily serve to immobilize prey, achieved through neurotoxins targeting ion channels. Peptides constitute a major part of these venoms, displaying diverse pharmacological activities, and making them appealing for drug development. Moreover, spider-venom peptides have emerged as valuable tools for exploring human disease mechanisms. This review focuses on the roles of spider-venom peptides in spider survival strategies and their dual significance as pharmaceutical research tools. By integrating recent discoveries, it provides a comprehensive overview of these peptides, their targets, bioactivities, and their relevance in spider survival and medical research.
Collapse
Affiliation(s)
- Ruiyin Guo
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| | - Gang Guo
- The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, China;
| | - Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| | - Gaochi Xu
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| | - Ren Lai
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming-Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China
| | - Hui Jin
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| |
Collapse
|
4
|
Yuan F, Li S, Huang B, Hu Y, Zeng X, Peng Y, Du C, Rong M. Molecular mechanism by which spider-driving peptide potentiates coagulation factors. Biomed Pharmacother 2023; 166:115421. [PMID: 37660649 DOI: 10.1016/j.biopha.2023.115421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
Hemostasis is a crucial process that quickly forms clots at injury sites to prevent bleeding and infections. Dysfunctions in this process can lead to hemorrhagic disorders, such as hemophilia and thrombocytopenia purpura. While hemostatic agents are used in clinical treatments, there is still limited knowledge about potentiators targeting coagulation factors. Recently, LCTx-F2, a procoagulant spider-derived peptide, was discovered. This study employed various methods, including chromogenic substrate analysis and dynamic simulation, to investigate how LCTx-F2 enhances the activity of thrombin and FXIIa. Our findings revealed that LCTx-F2 binds to thrombin and FXIIa in a similar manner, with the N-terminal penetrating the active-site cleft of the enzymes and the intermediate section reinforcing the peptide-enzyme connection. Interestingly, the C-terminal remained at a considerable distance from the enzymes, as evidenced by the retention of affinity for both enzymes using truncated peptide T-F2. Furthermore, results indicated differences in the bonding relationship of critical residues between thrombin and FXIIa, with His13 facilitating binding to thrombin and Arg7 being required for binding to FXIIa. Overall, our study sheds light on the molecular mechanism by which LCTx-F2 potentiates coagulation factors, providing valuable insights that may assist in designing drugs targeting procoagulation factors.
Collapse
Affiliation(s)
- Fuchu Yuan
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, China
| | - Shuwan Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, China
| | - Biao Huang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, China
| | - Ya Hu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, China
| | - Xiongzhi Zeng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, China
| | - Yanmei Peng
- Institute of Innovative Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410006, China
| | - Canwei Du
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China; Institute of Innovative Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410006, China.
| | - Mingqiang Rong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, China.
| |
Collapse
|
5
|
Richards NJ, Alqallaf A, Mitchell RD, Parnell A, Haidar HB, Almeida JR, Williams J, Vijayakumar P, Balogun A, Matsakas A, Trim SA, Patel K, Vaiyapuri S. Indian Ornamental Tarantula ( Poecilotheria regalis) Venom Affects Myoblast Function and Causes Skeletal Muscle Damage. Cells 2023; 12:2074. [PMID: 37626884 PMCID: PMC10453882 DOI: 10.3390/cells12162074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Envenomation by the Indian ornamental tarantula (Poecilotheria regalis) is medically relevant to humans, both in its native India and worldwide, where they are kept as pets. Muscle-related symptoms such as cramps and pain are commonly reported in humans following envenomation by this species. There is no specific treatment, including antivenom, for its envenomation. Moreover, the scientific knowledge of the impact of this venom on skeletal muscle function is highly limited. Therefore, we carried out this study to better understand the myotoxic properties of Poecilotheria regalis venom by determining its effects in cultured myoblasts and in the tibialis anterior muscle in mice. While there was no effect found on undifferentiated myoblasts, the venom affected differentiated multinucleated myotubes resulting in the reduction of fusion and atrophy of myotubes. Similarly, intramuscular administration of this venom in the tibialis anterior muscle in mice resulted in extensive muscle damage on day 5. However, by day 10, the regeneration was evident, and the regeneration process continued until day 20. Nevertheless, some tissue abnormalities including reduced dystrophin expression and microthrombi presence were observed on day 20. Overall, this study demonstrates the ability of this venom to induce significant muscle damage and affect its regeneration in the early stages. These data provide novel mechanistic insights into this venom-induced muscle damage and guide future studies to isolate and characterise individual toxic component(s) that induce muscle damage and their significance in developing better therapeutics.
Collapse
Affiliation(s)
- Nicholas J. Richards
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
| | - Ali Alqallaf
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
- Medical Services Authority, Ministry of Defence, Kuwait City 13012, Kuwait
| | | | - Andrew Parnell
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
- Micregen Ltd., Thames Valley Science Park, Reading RG2 9LH, UK;
| | - Husain Bin Haidar
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
| | - José R. Almeida
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (J.R.A.); (J.W.); (P.V.)
| | - Jarred Williams
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (J.R.A.); (J.W.); (P.V.)
| | - Pradeep Vijayakumar
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (J.R.A.); (J.W.); (P.V.)
| | - Adedoyin Balogun
- Molecular Physiology Laboratory, Centre for Biomedicine, Hull York Medical School, Hull HU6 7RX, UK
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Biomedicine, Hull York Medical School, Hull HU6 7RX, UK
| | | | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (J.R.A.); (J.W.); (P.V.)
| |
Collapse
|
6
|
Yang M, Huan W, Zhang G, Li J, Xia F, Durrani R, Zhao W, Lu J, Peng X, Gao F. Identification of Protein Quality Markers in Toad Venom from Bufo gargarizans. Molecules 2023; 28:molecules28083628. [PMID: 37110862 PMCID: PMC10141085 DOI: 10.3390/molecules28083628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Toad venom is a traditional Chinese medicine with high medicinal value. The existing quality evaluation standards of toad venom have obvious limitations because of the lack of research on proteins. Thus, it is necessary to screen suitable quality markers and establish appropriate quality evaluation methods for toad venom proteins to guarantee their safety and efficacy in clinical applications. SDS-PAGE, HPLC, and cytotoxicity assays were used to analyze differences in protein components of toad venom from different areas. Functional proteins were screened as potential quality markers by proteomic and bioinformatic analyses. The protein components and small molecular components of toad venom were not correlated in content. Additionally, the protein component had strong cytotoxicity. Proteomics analysis showed that 13 antimicrobial proteins, four anti-inflammatory and analgesic proteins, and 20 antitumor proteins were differentially expressed extracellular proteins. A candidate list of functional proteins was coded as potential quality markers. Moreover, Lysozyme C-1, which has antimicrobial activity, and Neuropeptide B (NPB), which has anti-inflammatory and analgesic activity, were identified as potential quality markers for toad venom proteins. Quality markers can be used as the basis of quality studies of toad venom proteins and help to construct and improve safe, scientific, and comprehensive quality evaluation methods.
Collapse
Affiliation(s)
- Meiyun Yang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Guobing Zhang
- Department of Pharmacy, Zhejiang Province People's Hospital, Hangzhou 310014, China
| | - Jie Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Fengyan Xia
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 313000, China
| | - Rabia Durrani
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wei Zhao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Jidong Lu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinmeng Peng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Fei Gao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
7
|
Nishiduka ES, Abreu TF, Abukawa FM, Oliveira UC, Tardivo CEO, Nascimento SM, Meissner GO, Chaim OM, Juliano MA, Kitano ES, Zelanis A, Serrano SMT, da Silva PI, Junqueira-de-Azevedo IL, Nishiyama-Jr MY, Tashima AK. Multiomics Profiling of Toxins in the Venom of the Amazonian Spider Acanthoscurria juruenicola. J Proteome Res 2022; 21:2783-2797. [PMID: 36260604 DOI: 10.1021/acs.jproteome.2c00593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acanthoscurria juruenicola is an Amazonian spider described for the first time almost a century ago. However, little is known about their venom composition. Here, we present a multiomics characterization of A. juruenicola venom by a combination of transcriptomics, proteomics, and peptidomics approaches. Transcriptomics of female venom glands resulted in 93,979 unique assembled mRNA transcript encoding proteins. A total of 92 proteins were identified in the venom by mass spectrometry, including 14 mature cysteine-rich peptides (CRPs). Quantitative analysis showed that CRPs, cysteine-rich secretory proteins, metalloproteases, carbonic anhydrases, and hyaluronidase comprise >90% of the venom proteome. Relative quantification of venom toxins was performed by DIA and DDA, revealing converging profiles of female and male specimens by both methods. Biochemical assays confirmed the presence of active hyaluronidases, phospholipases, and proteases in the venom. Moreover, the venom promoted in vivo paralytic activities in crickets, consistent with the high concentration of CRPs. Overall, we report a comprehensive analysis of the arsenal of toxins of A. juruenicola and highlight their potential biotechnological and pharmacological applications. Mass spectrometry data were deposited to the ProteomeXchange Consortium via the PRIDE repository with the dataset identifier PXD013149 and via the MassIVE repository with the dataset identifier MSV000087777.
Collapse
Affiliation(s)
- Erika S Nishiduka
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo 04023-901, Brazil
| | - Thiago F Abreu
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo 04023-901, Brazil
| | - Fernanda Midori Abukawa
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Ursula C Oliveira
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Caio E O Tardivo
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo 04023-901, Brazil
| | - Soraia M Nascimento
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Gabriel O Meissner
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, Puerto Rico, Brazil
| | - Olga M Chaim
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, Puerto Rico, Brazil.,Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Maria A Juliano
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo 04021-001, Brazil
| | - Eduardo S Kitano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo, (ICT-UNIFESP), São José dos Campos 12231-280, Brazil
| | - Solange M T Serrano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Pedro I da Silva
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Inácio L Junqueira-de-Azevedo
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Milton Y Nishiyama-Jr
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Alexandre K Tashima
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo 04023-901, Brazil
| |
Collapse
|