1
|
Ma G, Yan X, Wang C, Ran X, Liang Z, Chen X, Hu T, Tang X, Zhuang H, Huang Y, Luo P, Shen L. Mechanism of arsenic-induced liver injury in rats revealed by metabolomics and ionomics based approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118038. [PMID: 40090166 DOI: 10.1016/j.ecoenv.2025.118038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/11/2025] [Accepted: 03/08/2025] [Indexed: 03/18/2025]
Abstract
Arsenic (As) is an environmental toxicant and human carcinogen, long-term exposure to As can lead to varying degrees of liver injury. In this study, the liver injury model of As poisoned Sprague-Dawley (SD) rats was established, and the potential mechanism was investigated by metabonomics and ionomics. A total of 164 differential expressed metabolites (DEMs) were identified between the As poisoned group and the control group, which mainly involved in nicotinate and nicotinamide metabolism, steroid hormone biosynthesis, taurine and hypotaurine metabolism, and porphyrin metabolism. The levels of 10 ions were significantly increased in As poisoned group, including As, bismuth (Bi), cadmium (Cd), mercury (Hg), manganese (Mn), rubidium (Rb), antimony (Sb), strontium (Sr), uranium(U), and zinc (Zn), in contrast, the levels of lead (Pb) and thallium (TI) were significantly decreased. Spearman correlation analysis showed that As, Cd, Hg and Pb were negatively correlated with androstenedione, protoporphyrinogen IX and estriol, whereas As and Mn was positively correlated with progesterone (PROG), Cd was positively correlated with NAD+ and 3-Sulfino-L-alanine. There are sex differences in changes in metabolites and ions levels. Male and female rats shared 60 DEMs and 2 pathways (steroid hormone biosynthesis and porphyrin metabolism pathway). The levels of As, Cd, Hg, and Sr were significantly changed in both male and female rats. In both female and male rats, As was positively correlated with PROG, and Cd was positively correlated with coproporphyrin III. The results of this study provide new insights to elucidate the mechanism of As-induced liver injury in rats.
Collapse
Affiliation(s)
- Guanwei Ma
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xi Yan
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Chao Wang
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China
| | - Xiaoqian Ran
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaolu Chen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Ting Hu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yuhan Huang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Peng Luo
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, PR China; State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine.
| | - Liming Shen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
2
|
Han W, Song T, Huang Z, Liu Y, Xu B, Huang C. Distinct signatures of gut microbiota and metabolites in primary biliary cholangitis with poor biochemical response after ursodeoxycholic acid treatment. Cell Biosci 2024; 14:80. [PMID: 38879547 PMCID: PMC11180406 DOI: 10.1186/s13578-024-01253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/24/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND About 1/3 of primary biliary cholangitis (PBC) patients suffered from poor response worldwide. And these patients present intestinal disturbances. We aimed to identify signatures of microbiota and metabolites in PBC patients with poor response, comparing to patients with response. METHODS This study enrolled 25 subjects (14 PBC patients with response and 11 PBC patients with poor response). Metatranscriptomics and metabolomics analysis were carried out on their fecal. RESULTS PBC patients with poor response had significant differences in the composition of bacteria, characterized by decreased Gemmiger etc. and increased Ruminococcus etc. The differential microbiota functions characterized by decreased abundance of elongation factor Tu and elongation factor G base on the KO database, as well as decreased abundance of Replicase large subunit etc. based on the SWISS-PROT database. PBC with poor response also had significant differences in 17 kinds of bacterial metabolites, characterized by decreased level of metabolites vital in bile acids metabolism pathway (L-Cysteine etc.) and the all-trans-Retinoic acid, a kind of immune related metabolite. The altered microbiota was associated with the differential expressed metabolites and clinical liver function indicators. 1 bacterial genera, 2 bacterial species and 9 metabolites simultaneously discriminated PBC with poor response from PBC with response with high accuracy. CONCLUSION PBC patients with poor response exhibit unique changes in microbiota and metabolite. Gut microbiota and metabolite-based algorithms could be used as additional tools for differential prediction of PBC with poor prognosis.
Collapse
Affiliation(s)
- Weijia Han
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Second Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ting Song
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, 266033, Shandong, China
| | - Zhongyi Huang
- Emergency Department, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yanmin Liu
- Second Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Xu
- Second Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chunyang Huang
- Second Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Li X, Xu X, Tao S, Su Y, Wen L, Wang D, Liu J, Feng Q. Gut microbes combined with metabolomics reveal the protective effects of Qijia Rougan decoction against CCl 4-induced hepatic fibrosis. Front Pharmacol 2024; 15:1347120. [PMID: 38606180 PMCID: PMC11007057 DOI: 10.3389/fphar.2024.1347120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Background: The occurrence and development of Hepatic fibrosis (HF) are closely related to the gut microbial composition and alterations in host metabolism. Qijia Rougan decoction (QJ) is a traditional Chinese medicine compound utilized clinically for the treatment of HF with remarkable clinical efficacy. However, its effect on the gut microbiota and metabolite alterations is unknown. Therefore, our objective was to examine the impact of QJ on the gut microbiota and metabolism in Carbon tetrachloride (CCl4)-induced HF. Methods: 40% CCl4 was used to induce HF, followed by QJ administration for 6 weeks. Serum biochemical analyses, histopathology, immunohistochemistry, RT-PCR, 16S rRNA gene sequencing, and non-targeted metabolomics techniques were employed in this study to investigate the interventional effects of QJ on a CCl4-induced HF model in rats. Results: This study demonstrated that QJ could effectively ameliorate CCl4-induced hepatic inflammation and fibrosis. Moreover, QJ upregulated the expression of intestinal tight junction proteins (TJPs) and notably altered the abundance of some gut microbes, for example, 10 genera closely associated with HF-related indicators and TJPs. In addition, metabolomics found 37 key metabolites responded to QJ treatment and strongly associated with HF-related indices and TJPs. Furthermore, a tight relation between 10 genera and 37 metabolites was found post correlation analysis. Among them, Turicibacter, Faecalibaculum, Prevotellaceae UCG 001, and unclassified Peptococcaceae may serve as the core gut microbes of QJ that inhibit HF. Conclusion: These results suggest that QJ ameliorates hepatic inflammation and fibrosis, which may be achieved by improving intestinal tight junctions and modulating gut microbiota composition as well as modulating host metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Dong Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jibin Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quansheng Feng
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Lu AX, Lin Y, Li J, Liu JX, Yan CH, Zhang L. Effects of food-borne docosahexaenoic acid supplementation on bone lead mobilisation, mitochondrial function and serum metabolomics in pre-pregnancy lead-exposed lactating rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122613. [PMID: 37757928 DOI: 10.1016/j.envpol.2023.122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Large bone lead (Pb) resulting from high environmental exposure during childhood is an important source of endogenous Pb during pregnancy and lactation. Docosahexaenoic acid (DHA) attenuates Pb toxicity, however, the effect of DHA on bone Pb mobilisation during lactation has not been investigated. We aimed to study the effects of DHA supplementation during pregnancy and lactation on bone Pb mobilisation during lactation and its potential mechanisms. Weaning female rats were randomly divided into control (0.05% sodium acetate) and Pb-exposed (0.05% Pb acetate) groups, after a 4-week exposure by ad libitum drinking and a subsequent 4-week washout period, all female rats were mated with healthy males until pregnancy. Then exposed rats were randomly divided into Pb and Pb + DHA groups, and the latter was given a 0.14% DHA diet, while the remaining groups were given normal feed until the end of lactation. Pb and calcium levels, bone microarchitecture, bone turnover markers, mitochondrial function and serum metabolomics were analyzed. The results showed that higher blood and bone Pb levels were observed in the Pb group compared to the control, and there was a significant negative correlation between blood and bone Pb. Also, Pb increased trabecular bone loss along with slightly elevated serum C-telopeptide of type I collagen (CTX-I) levels. However, DHA reduced CTX-I levels and improved trabecular bone microarchitecture. Metabolomics showed that Pb affected mitochondrial function, which was further demonstrated in bone tissue by significant reductions in ATP levels, Na+-K+-ATPase, Ca2+-Mg2+-ATPase and CAT activities, and elevated levels of MDA, IL-1β and IL-18. However, these alterations were partially mitigated by DHA. In conclusion, DHA supplementation during pregnancy and lactation improved bone Pb mobilisation and mitochondrial dysfunction in lactating rats induced by pre-pregnancy Pb exposure, providing potential means of mitigating bone Pb mobilisation levels during lactation, but the mechanism still needs further study.
Collapse
Affiliation(s)
- An-Xin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yin Lin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jing Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun-Xia Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
5
|
Huang T, Wu Y, Huang L, Lin R, Li Z, Wang X, Wu P, Huang L. Mechanism of the Effect of Compound Anoectochilus roxburghii (Wall.) Lindl. Oral Liquid in Treating Alcoholic Rat Liver Injury by Metabolomics. Drug Des Devel Ther 2023; 17:3409-3428. [PMID: 38024538 PMCID: PMC10659148 DOI: 10.2147/dddt.s427837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Compound Anoectochilus roxburghii (Wall.) Lindl oral liquid (CAROL) is often as a hepatoprotective agent. The present study aimed to elucidate the protective mechanism of CAROL against alcoholic liver injury in rats by untargeted metabolomics combined with multivariate statistical analysis. Methods An alcoholic liver disease model was established in sprague-dawley (SD) rats by gavage of alcohol, and CAROL treatment was administered. The hepatoprotective effect of CAROL was evaluated by examining liver tissues changes and detecting biochemical index activities and cytokines in serum and liver homogenates. The metabolites in serum samples were examined using ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) and multivariate statistical analysis to screen for differentially expressed metabolites and Kyoto Encyclopedia of Genes and Genomes (KEGG) to assess potential metabolic pathways. Results CAROL has the potential to downregulate inflammation levels and alleviate oxidative stress. The differential metabolites are mainly engaged in riboflavin metabolism, arginine and proline metabolism, phenylalanine, tyrosine and tryptophan biosynthesis metabolism, phenylalanine metabolism, pyrimidine metabolism, and vitamin B6 metabolism to achieve hepatoprotective effects. Conclusion CAROL may exhibit beneficial hepatoprotective effects by reducing inflammation, mitigating oxidative stress, and modulating metabolites and their metabolic pathways.This study has important implications for advancing the clinical application of CAROL.
Collapse
Affiliation(s)
- Tingxuan Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Youjia Wu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Lingyi Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Renyi Lin
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Zhenyue Li
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Xiaoxiao Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Pingping Wu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Liying Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
6
|
Chen S, Liu L, Jiang HX, Sun Q, Zhang L, Liu JQ, Liu LF. UPLC-Q-TOF-MS/MS-based urine metabolomics studies on the toxicity and detoxication of Tripterygium wilfordii Hook. f. after roasting. J Pharm Biomed Anal 2023; 234:115573. [PMID: 37459834 DOI: 10.1016/j.jpba.2023.115573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 08/26/2023]
Abstract
Tripterygium wilfordii (TW), a well-known traditional Chinese medicine, was widely used in the treatment of autoimmune disorders and inflammatory diseases. However, the clinical use of TW was limited by severe toxicities, such as hepatotoxicity and nephrotoxicity. Our previous studies indicated that roasting was an effective approach for reducing TW-induced toxicity. After roasting, celastrol was completely decomposed, partially converted into 1-hydroxy-2,5,8-trimethyl-9-fluorenone and the total alkaloids content were significantly reduced. However, the detoxication mechanisms of roasting on TW were poorly unknown. This study aimed to explore the toxicity and detoxification mechanisms of TW after roasting based on urine metabolomics. Promising biomarkers were evaluated by multiple comparison analyses. Sixteen toxicity biomarkers were identified between control group and total extract group. Twelve toxicity biomarkers were identified between control group and total alkaloids group. Eight toxicity biomarkers were identified between control group and celastrol group. These metabolites were mainly involved in seven metabolic pathways, summarized as pentose and glucuronate interconversions, lipid metabolism (sphingolipid metabolism, glycerophospholipid metabolisms, fatty acid biosynthesis and steroid hormone biosynthesis) and amino acid metabolism (taurine and hypotaurine metabolism, tryptophan metabolism). After roasting, the toxicities of total extract, total alkaloids and celastrol were relieved by ameliorative serum parameters and pathological changes in hepatic and renal tissues which revealed that the reduction of celastrol and total alkaloids played important roles in the detoxification of roasting on TW. Furthermore, roasting regulated the levels of fourteen potential biomarkers in the total extract group, ten potential biomarkers in the total alkaloids group and seven candidate biomarkers in the celastrol group to normal levels. Biological pathway analysis revealed that roasting may ameliorate TW-induced metabolic disorders in pentose and glucuronate interconversions, lipid metabolism and amino acid metabolism. This study provided evidence for the application of roasting in TW.
Collapse
Affiliation(s)
- Shu Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, No.1688 Meiling Road, Nanchang, Jiangxi Province 330004, PR China.
| | - Li Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, No.1688 Meiling Road, Nanchang, Jiangxi Province 330004, PR China.
| | - Hong-Xia Jiang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, No.1688 Meiling Road, Nanchang, Jiangxi Province 330004, PR China.
| | - Qun Sun
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, No.1688 Meiling Road, Nanchang, Jiangxi Province 330004, PR China.
| | - Liang Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, No.1688 Meiling Road, Nanchang, Jiangxi Province 330004, PR China.
| | - Jian-Qun Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, No.1688 Meiling Road, Nanchang, Jiangxi Province 330004, PR China.
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| |
Collapse
|
7
|
3-Hydroxymorindone from Knoxia roxburghii (Spreng.) M. A. Rau induces ROS-mediated mitochondrial dysfunction cervical cancer cells apoptosis via inhibition of PI3K/AKT/NF-κB signaling pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
8
|
Current Trends in Toxicity Assessment of Herbal Medicines: A Narrative Review. Processes (Basel) 2022. [DOI: 10.3390/pr11010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Even in modern times, the popularity level of medicinal plants and herbal medicines in therapy is still high. The World Health Organization estimates that 80% of the population in developing countries uses these types of remedies. Even though herbal medicine products are usually perceived as low risk, their potential health risks should be carefully assessed. Several factors can cause the toxicity of herbal medicine products: plant components or metabolites with a toxic potential, adulteration, environmental pollutants (heavy metals, pesticides), or contamination of microorganisms (toxigenic fungi). Their correct evaluation is essential for the patient’s safety. The toxicity assessment of herbal medicine combines in vitro and in vivo methods, but in the past decades, several new techniques emerged besides conventional methods. The use of omics has become a valuable research tool for prediction and toxicity evaluation, while DNA sequencing can be used successfully to detect contaminants and adulteration. The use of invertebrate models (Danio renio or Galleria mellonella) became popular due to the ethical issues associated with vertebrate models. The aim of the present article is to provide an overview of the current trends and methods used to investigate the toxic potential of herbal medicinal products and the challenges in this research field.
Collapse
|
9
|
Ma L, Luo Z, Huang Y, Li Y, Guan J, Zhou T, Du Z, Yong K, Yao X, Shen L, Yu S, Zhong Z, Hu Y, Peng G, Shi X, Cao S. Modulating gut microbiota and metabolites with dietary fiber oat β-glucan interventions to improve growth performance and intestinal function in weaned rabbits. Front Microbiol 2022; 13:1074036. [PMID: 36590438 PMCID: PMC9798315 DOI: 10.3389/fmicb.2022.1074036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
The effect of oat β-glucan on intestinal function and growth performance of weaned rabbits were explored by multi-omics integrative analyses in the present study. New Zealand White rabbits fed oat β-glucan [200 mg/kg body weight (BW)] for 4 weeks, and serum markers, colon histological alterations, colonic microbiome, colonic metabolome, and serum metabolome were measured. The results revealed that oat β-glucan increased BW, average daily gain (ADG), average daily food intake (ADFI), and decreased serum tumor necrosis factor-α (TNF-α) interleukin-1β (IL-1β), and lipopolysaccharide (LPS) contents, but did not affect colonic microstructure. Microbiota community analysis showed oat β-glucan modulated gut microbial composition and structure, increased the abundances of beneficial bacteria Lactobacillus, Prevotellaceae_UCG-001, Pediococcus, Bacillus, etc. Oat β-glucan also increased intestinal propionic acid, valeric acid, and butyric acid concentrations, decreased lysine and aromatic amino acid (AAA) derivative contents. Serum metabolite analysis revealed that oat β-glucan altered host carbohydrate, lipid, and amino acid metabolism. These results suggested that oat β-glucan could inhibit systemic inflammation and protect intestinal function by regulating gut microbiota and related metabolites, which further helps to improve growth performance in weaned rabbits.
Collapse
Affiliation(s)
- Li Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Zhengzhong Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yixin Huang
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Yan Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Guan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhenlong Du
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kang Yong
- Department of Animal Husbandry and Veterinary Medicine, College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Xueping Yao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanchun Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaodong Shi
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China,*Correspondence: Xiaodong Shi,
| | - Suizhong Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Suizhong Cao,
| |
Collapse
|
10
|
Emerging biotechnology applications in natural product and synthetic pharmaceutical analyses. Acta Pharm Sin B 2022; 12:4075-4097. [DOI: 10.1016/j.apsb.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
|
11
|
Hu M, Zhong Y, Liu J, Zheng S, Lin L, Lin X, Liang B, Huang Y, Xian H, Li Z, Zhang B, Wang B, Meng H, Du J, Ye R, Lu Z, Yang X, Yang X, Huang Z. An adverse outcome pathway-based approach to assess aurantio-obtusin-induced hepatotoxicity. Toxicology 2022; 478:153293. [PMID: 35995123 DOI: 10.1016/j.tox.2022.153293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022]
Abstract
Cassiae semen (CS), a traditional Chinese medicine, has various bioactivities in preclinical and clinical practice. Aurantio-obtusin (AO) is a major anthraquinone (AQ) ingredient derived from CS, and has drawn public concerns over its potential hepatotoxicity. We previously found that AO induces hepatic necroinflammation by activating NOD-like receptor protein 3 inflammasome signaling. However, the mechanisms contributing to AO-motivated hepatotoxicity remain unclear. Herein, we evaluated hepatotoxic effects of AO on three liver cell lines by molecular and biochemical analyses. We found that AO caused cell viability inhibition and biochemistry dysfunction in the liver cells. Furthermore, AO elevated reactive oxygen species (ROS), followed by mitochondrial dysfunction (decreases in mitochondrial membrane potential and adenosine triphosphate) and apoptosis (increased Caspase-3, Cleaved caspase-3, Cytochrome c and Bax expression, and decreased Bcl-2 expression). We also found that AO increased the lipid peroxidation (LPO) and enhanced ferroptosis by activating cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-cAMP response element-binding (CREB) pathway (increases in PKA, p-CREB, acyl-CoA synthetase long chain family member 4). Based on these results, we used an AOP framework to explore the mechanisms underlying AO's hepatotoxicity. It starts from molecular initiating event (ROS), and follows two critical toxicity pathways (i.e., mitochondrial dysfunction-mediated apoptosis and LPO-enhanced ferroptosis) over a series of key events (KEs) to the adverse outcome of hepatotoxicity. The results of an assessment confidence in the adverse outcome pathway (AOP) framework supported the evidence concordance in dose-response, temporal and incidence relationships between KEs in AO-induced hepatotoxicity. This study's findings offer a novel toxicity pathway network for AO-caused hepatotoxicity.
Collapse
Affiliation(s)
- Manjiang Hu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jun Liu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Shaozhen Zheng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Li Lin
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xi Lin
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bingli Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bo Wang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hao Meng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Du
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhi Lu
- Infinitus (China) Inc., Guangzhou 510623, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
12
|
Liu Y, Wang J, Dou T, Zhou L, Guan X, Liu G, Li X, Han M, Chen X. The liver metabolic features of Mogroside V compared to Siraitia grosvenorii fruit extract in allergic pneumonia mice. Mol Immunol 2022; 145:80-87. [PMID: 35305534 DOI: 10.1016/j.molimm.2022.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND For a long time, Siraitia grosvenorii fruit extract (SGFE) and its dominant compounds, mogroside V(MV) were both reported to have therapeutic effects on allergic pneumonia, while previous studies only stay on phenotype and mechanism of the two active ingredients, hardly have any studies compared the two ingredients on the effect of liver metabolic, and revealed the relationship between mechanism and liver metabolism. OBJECTIVE Here we elucidated and compared the curative mechanisms of SGFE and MV on allergic pneumonia through liver metabolomics. METHODS We established allergic pneumonia mice using ovalbumin, then treated the mice with SGFE, MV and positive drug of Suhuang Zhike Jiaonang. The effects of the drugs were evaluated by detecting inflammatory cytokines, pathological examination and liver oxidative stress biomarkers. We explored the metabolic features between SGFE and MV through liver metabolomics consequently. RESULTS At phenotype, we confirmed that MV and SGFE both inhibited the expression of inflammatory cytokines including interleukins-5 (IL-5), IL-13, IL-17 and OVA-induced immunoglobulin E, which can also relieve inflammatory cells infiltration and mesenchymal thickening in lung tissue compared with positive drug. In addition, both of them can alleviate oxidative stress damage in liver, while MV showed a superior effect than SGFE. In metabolomic analysis, the two ingredients were found to ameliorate inflammatory and oxidative reaction mainly in controlling pathways of Riboflavin metabolism and Glutathione metabolism. While SGFE were found to control other metabolic pathways such as Phenylalanine metabolism, Sphingolipid metabolism, Glycerollipid metabolism, Glycine, serine and threonine metabolism and Arginine and proline metabolism. CONCLUSION From the results we can infer that the minor ingredients except MV in SGFE contribute poor function to the treatment of allergic pneumonia and MV may be the main functional constituent that relieve allergic pneumonia in SGFE. This study will be beneficial to figuring out a systematic theory of Siraitia grosvenorii active ingredients and proposing a guidance for pharmacology development.
Collapse
Affiliation(s)
- Yisa Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Juan Wang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, PR China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, PR China
| | - Tong Dou
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Luwei Zhou
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Xiao Guan
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China; Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Guoxiang Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Xiaojuan Li
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Mengjie Han
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China
| | - Xu Chen
- Department of Pharmacy, Guilin Medical University, Guilin 541199, PR China.
| |
Collapse
|
13
|
Hu M, Lin L, Liu J, Zhong Y, Liang B, Huang Y, Li Z, Lin X, Wang B, Zhang B, Meng H, Ye R, Du J, Dai M, Peng Y, Li H, Wu Q, Gao H, Yang X, Huang Z. Aurantio-obtusin induces hepatotoxicity through activation of NLRP3 inflammasome signaling. Toxicol Lett 2021; 354:1-13. [PMID: 34718095 DOI: 10.1016/j.toxlet.2021.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 12/08/2022]
Abstract
Aurantio-obtusin (AO) is a major anthraquinone (AQ) compound derived from Cassiae semen (CS). Although pharmacological studies have shown that the CS extracts can serve as effective agents in preclinical and clinical practice, AQ-induced hepatotoxicity in humans has attracted widespread attention. To explore whether AO induces hepatotoxicity and its underlying mechanisms, we exposed larval zebrafish and mice to AO. We found that AO delayed yolk sac absorption, and increased liver area and inflammation in the larval zebrafish. This inflammation was manifested as an increase in liver neutrophils and the up-regulated mRNA expression of interleukin-6 (Il-6) and tumor necrosis factor-α (Tnf-α) in the larval zebrafish. Furthermore, a pharmacokinetics study showed that AO was quickly absorbed into the blood and rapidly metabolized in the mice. Of note, AO induced hepatotoxicity in a gender-dependent manner, characterized by liver dysfunction, increased hepatocyte necrosis with inflammatory infiltration, and up-regulated mRNAs of Il-6, Tnf-α and monocyte chemotactic protein 1(Mcp1) in the female mice after 28-day oral administration. It also highlighted that AO triggered NOD-like receptor protein (NLRP) signaling in the female mice, as evidenced by the increased NLRP3, Caspase-1, pro-IL-1β, IL-1β and IL-18. Finally, we found that AO led to a significant increase in potassium calcium-activated channel, subfamily N, member 4 (KCNN4) and reactive oxygen species (ROS) levels, along with decreased nuclear factor kappa B p65 (NF-κB p65), in the female mouse livers. In conclusion, AO induced hepatotoxicity by activating NLRP3 inflammasome signaling, at least in part, through increased KCNN4 and ROS production, and NF-κB inhibition.
Collapse
Affiliation(s)
- Manjiang Hu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Li Lin
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jun Liu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xi Lin
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Bo Wang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Bingli Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Hao Meng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jiaxin Du
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Mingzhu Dai
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Yi Peng
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Hongqun Li
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Qinghong Wu
- Laboratory Animal Management Center, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Hongbin Gao
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xingfen Yang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Innovation in drug toxicology: Application of mass spectrometry imaging technology. Toxicology 2021; 464:153000. [PMID: 34695509 DOI: 10.1016/j.tox.2021.153000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful molecular imaging technology that can obtain qualitative, quantitative, and location information by simultaneously detecting and mapping endogenous or exogenous molecules in biological tissue slices without specific chemical labeling or complex sample pretreatment. This article reviews the progress made in MSI and its application in drug toxicology research, including the tissue distribution of toxic drugs and their metabolites, the target organs (liver, kidney, lung, eye, and central nervous system) of toxic drugs, the discovery of toxicity-associated biomarkers, and explanations of the mechanisms of drug toxicity when MSI is combined with the cutting-edge omics methodologies. The unique advantages and broad prospects of this technology have been fully demonstrated to further promote its wider use in the field of pharmaceutical toxicology.
Collapse
|
15
|
Chen C, Zhang P, Bao G, Fang Y, Chen W. Discovery of potential biomarkers in acute kidney injury by ultra-high-performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS). Int Urol Nephrol 2021; 53:2635-2643. [PMID: 33686532 DOI: 10.1007/s11255-021-02829-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The LC-MS/MS-based non-targeted metabolomics method was used to differentially screen serum and urine metabolites of acute kidney injury (AKI) patients and healthy people, to explore potential biomarkers of AKI and analyze related pathways, and explain the potential mechanism and biological significance of AKI. METHODS The serum and urine samples from 30 AKI patients and 20 healthy people were selected to conduct a non-targeted metabolomics study by ultra-high-performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS). The differential metabolites between the two groups were searched by the human metabolome (HMDB) database ( https://hmdb.ca/ ) and the related pathways of these potential biomarkers were identified by searching the Kyoto encyclopedia of genes and genomes (KEGG) database ( https://www.kegg.jp/ ). The total metabolic pathways were analyzed by the MS Peaks to Pathways module of MetaboAnalyst ( https://www.metaboanalyst.ca/ ). RESULTS Multivariate data analysis found that serum and urine metabolism in AKI patients was significantly different from healthy people. We found three metabolites in urine (2-S-glutathionyl glutathione acetate, 5-L-Glutamyl-taurine, and L-Phosphoarginine) contributing to the separation of AKI patients from healthy people, and major metabolic pathways associated with these potential biomarkers including cytochrome P450 metabolism, arginine, and proline metabolism. CONCLUSION 2-S-glutathionyl glutathione acetate, 5-L-Glutamyl-taurine, and L-Phosphoarginine were associated with AKI patients, which could be selected as potential biomarkers to predicate AKI disease.
Collapse
Affiliation(s)
- Chaoyi Chen
- Department of Nephrology, Anhui Provincial Hospital Affiliated With Anhui Medical University, 17 Lujiang Road, Luyang, Hefei, 230001, Anhui, China
| | - Peng Zhang
- State Key Laboratory of Tea Tree Biology and Resource Utilization, Anhui Agricultural University, 130 West Changjiang Road, Shushan, Hefei, 230036, Anhui, China
| | - Guanhu Bao
- State Key Laboratory of Tea Tree Biology and Resource Utilization, Anhui Agricultural University, 130 West Changjiang Road, Shushan, Hefei, 230036, Anhui, China
| | - Yuan Fang
- Department of Nephrology, Anhui Provincial Hospital Affiliated With Anhui Medical University, 17 Lujiang Road, Luyang, Hefei, 230001, Anhui, China
| | - Wei Chen
- Department of Nephrology, Anhui Provincial Hospital Affiliated With Anhui Medical University, 17 Lujiang Road, Luyang, Hefei, 230001, Anhui, China.
| |
Collapse
|
16
|
Xu L, Zhang Z, Hao F, Zhou W, Tang X, Gao Y. A comparative study of aurantio-obtusin metabolism in normal and liver-injured rats by ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry. J Pharm Biomed Anal 2021; 196:113896. [PMID: 33485130 DOI: 10.1016/j.jpba.2021.113896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Aurantio-obtusin, an anthraquinone isolated from cassiae semen, possesses diverse pharmacological activities, including hypotensive, hypolipidemic and anti-inflammatory effects. However, our previous studies demonstrated that exposure to aurantio-obtusin induced hepatotoxicity, but the mechanisms of the toxic effects remain unknown. The purpose of the present study is to establish a strategy for the metabolite profiling of aurantio-obtusin in normal and liver-injured rats. This study aimed at identifying the in vivo metabolites and the metabolic profiling in rats after oral administration at a dose of aurantio-obtusin (4 and 200 mg/kg) by using an ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and metabolynx™ software. A total of 39 metabolites were detected and 3 of them were compared with standard substances. The results indicated that the principal metabolism pathways of aurantio-obtusin in normal rats were glucuronidation and sulfation, while in rats with liver injury, demethylation, dehydroxylation and reduction were also observed and regarded as new metabolic patterns of aurantio-obtusin. These findings helped us to understand the pharmacological and toxicological mechanisms of aurantio-obtusin. Moreover, this study could help to elucidate the metabolic profiling of other anthraquinones.
Collapse
Affiliation(s)
- Longlong Xu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhuo Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Feiran Hao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xianglin Tang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Yue Gao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|