1
|
Tassou A, Richebe P, Rivat C. Mechanisms of chronic postsurgical pain. Reg Anesth Pain Med 2025; 50:77-85. [PMID: 39909543 DOI: 10.1136/rapm-2024-105964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/25/2024] [Indexed: 02/07/2025]
Abstract
Chronic pain after surgery, also known as chronic postsurgical pain (CPSP), is recognized as a significant public health issue with serious medical and economic consequences. Current research on CPSP underscores the significant roles of both peripheral and central sensitization in pain development and maintenance. Peripheral sensitization occurs at the site of injury, through the hyperexcitability of nerve fibers due to surgical damage and the release of inflammatory mediators. This leads to increased expression of pronociceptive ion channels and receptors, such as transient receptor potential and acid-sensing ion channels (ASIC), enhancing pain signal transmission. Central sensitization involves long-term changes in the central nervous system, particularly in the spinal cord. In this context, sensitized spinal neurons become more responsive to pain signals, driven by continuous nociceptive input from the periphery, which results in an enhanced pain response characterized by hyperalgesia and/or allodynia. Key players in this process include N-methyl-D-aspartate receptor and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, along with proinflammatory cytokines and chemokines released by activated glia. These glial cells release substances that further increase neuronal excitability, maintaining the sensitized state and contributing to persistent pain. The activation of antinociceptive systems is required for the resolution of pain after surgery, and default in these systems may also be considered as an important component of CPSP. In this review, we will examine the clinical factors underlying CPSP in patients and the mechanisms previously established in preclinical models of CPSP that may explain how acute postoperative pain may transform into chronic pain in patients.
Collapse
Affiliation(s)
- Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Philippe Richebe
- Department of Anesthesiology and Pain Medicine, Polyclinique Bordeaux Nord Aquitaine (PBNA), Bordeaux, France
- Anesthesiology and Pain Medicine, Maisonneuve Rosemont Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Cyril Rivat
- University of Montpellier, Montpellier, France
- Institut des Neurosciences de Montpellier INSERM U1298, Montpellier, France
| |
Collapse
|
2
|
Arteaga A, Biguetti CC, Chandrashekar BL, Mora J, Qureshi A, Rios E, La Fontaine J, Rodrigues DC. A Model Study to Evaluate Osseointegration and Fracture Healing Following Open Reduction and Internal Fixation (ORIF) in Diabetic Lewis Rats. J Foot Ankle Surg 2023; 62:832-839. [PMID: 37169119 PMCID: PMC11292579 DOI: 10.1053/j.jfas.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/13/2023]
Abstract
There is a higher risk of implant osseointegration failure after open reduction and internal fixation (ORIF) in patients with diabetes due to increased inflammatory conditions, associated metallic corrosion and infection. While it is possible to avoid elective osseous surgery in patients with diabetes, it may not be the case in nonelective cases, such as ORIF ankle fractures. A total of 30 male Lewis rats (12-15 weeks old) were distributed into diabetic (D) and nondiabetic (ND) groups. Fracture healing and osseointegration were evaluated at 2-, 10-, and 21-day time points. Microtomographic and histological analysis depicted distinct differences in fracture healing and osseointegration between D and ND animals. Immunohistochemical analysis exhibited elevated proliferation (PCNA) and osteogenic (Runx2) cells for ND animals, while HMGB1 (inflammatory marker) was elevated for D animals during healing. Bone resorption marker CTX-1 was elevated in the plasma of D animals at 2 days, while bone formation marker P1NP was higher for ND animals at 10 days. Overall, this model resulted in delayed implant osseointegration and fracture healing in diabetic animals, highlighting the importance of developing new biomaterials or implant coatings that can improve bone healing outcomes in this patient population.
Collapse
Affiliation(s)
- Alexandra Arteaga
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX
| | - Claudia Cristina Biguetti
- Department of Surgery and Biomechanics, School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen, TX
| | | | - Jimena Mora
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX
| | - Adeena Qureshi
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX
| | - Evelin Rios
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX
| | - Javier La Fontaine
- Department of Surgery and Biomechanics, School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen, TX
| | - Danieli C Rodrigues
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX.
| |
Collapse
|
3
|
Li X, Shen H, Zhang M, Teissier V, Huang EE, Gao Q, Tsubosaka M, Toya M, Kushioka J, Maduka CV, Contag CH, Chow SKH, Zhang N, Goodman SB. Glycolytic reprogramming in macrophages and MSCs during inflammation. Front Immunol 2023; 14:1199751. [PMID: 37675119 PMCID: PMC10477714 DOI: 10.3389/fimmu.2023.1199751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/21/2023] [Indexed: 09/08/2023] Open
Abstract
Background Dysregulated inflammation is associated with many skeletal diseases and disorders, such as osteolysis, non-union of fractures, osteonecrosis, osteoarthritis and orthopaedic infections. We previously showed that continuous infusion of lipopolysaccharide (LPS) contaminated polyethylene particles (cPE) caused prolonged inflammation and impaired bone formation. However, the metabolic and bioenergetic processes associated with inflammation of bone are unknown. Mitochondria are highly dynamic organelles that modulate cell metabolism and orchestrate the inflammatory responses that involve both resident and recruited cells. Glycolytic reprogramming, the shift from oxidative phosphorylation (OXPHOS) to glycolysis causes inappropriate cell activation and function, resulting in dysfunctional cellular metabolism. We hypothesized that impaired immunoregulation and bone regeneration from inflammatory states are associated with glycolytic reprogramming and mitochondrial dysfunction in macrophages (Mφ) and mesenchymal stromal cells (MSCs). Methods We used the Seahorse XF96 analyzer and real-time qPCR to study the bioenergetics of Mφ and MSCs exposed to cPE. To understand the oxygen consumption rate (OCR), we used Seahorse XF Cell Mito Stress Test Kit with Seahorse XF96 analyzer. Similarly, Seahorse XF Glycolytic Rate Assay Kit was used to detect the extracellular acidification rate (ECAR) and Seahorse XF Real-Time ATP Rate Assay kit was used to detect the real-time ATP production rates from OXPHOS and glycolysis. Real-time qPCR was performed to analyze the gene expression of key enzymes in glycolysis and mitochondrial biogenesis. We further detected the gene expression of proinflammatory cytokines in Mφ and genes related to cell differentiation in MSC during the challenge of cPE. Results Our results demonstrated that the oxidative phosphorylation of Mφ exposed to cPE was significantly decreased when compared with the control group. We found reduced basal, maximal and ATP-production coupled respiration rates, and decreased proton leak in Mφ during challenge with cPE. Meanwhile, Mφ showed increased basal glycolysis and proton efflux rates (PER) when exposed to cPE. The percentage (%) of PER from glycolysis was higher in Mφ exposed to cPE, indicating that the contribution of the glycolytic pathway to total extracellular acidification was elevated during the challenge of cPE. In line with the results of OCR and ECAR, we found Mφ during cPE challenge showed higher glycolytic ATP (glycoATP) production rates and lower mitochondrial ATP (mitoATP) production rates which is mainly from OXPHOS. Interestingly, MSCs showed enhanced glycolysis during challenge with cPE, but no significant changes in oxygen consumption rates (OCR). In accordance, seahorse assay of real-time ATP revealed glycoATP rates were elevated while mitoATP rates showed no significant differences in MSC during challenge with cPE. Furthermore, Mφ and MSCs exposed to cPE showed upregulated gene expression levels of glycolytic regulators and Mφ exposed to cPE expressed higher levels of pro-inflammatory cytokines. Conclusion This study demonstrated the dysfunctional bioenergetic activity of bone marrow-derived Mφ and MSCs exposed to cPE, which could impair the immunoregulatory properties of cells in the bone niche. The underlying molecular defect related to disordered mitochondrial function could represent a potential therapeutic target during the resolution of inflammation.
Collapse
Affiliation(s)
- Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mao Zhang
- Cardiovascular Institute Operations, Stanford University School of Medicine, Stanford, CA, United States
| | - Victoria Teissier
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ejun Elijah Huang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Chima V. Maduka
- Departments of Biomedical Engineering and Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Christopher H. Contag
- Departments of Biomedical Engineering and Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
4
|
Lopas LA, Shen H, Zhang N, Jang Y, Tawfik VL, Goodman SB, Natoli RM. Clinical Assessments of Fracture Healing and Basic Science Correlates: Is There Room for Convergence? Curr Osteoporos Rep 2022; 21:216-227. [PMID: 36534307 DOI: 10.1007/s11914-022-00770-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the clinical and basic science methods used to assess fracture healing and propose a framework to improve the translational possibilities. RECENT FINDINGS Mainstays of fracture healing assessment include clinical examination, various imaging modalities, and assessment of function. Pre-clinical studies have yielded insight into biomechanical progression as well as the genetic, molecular, and cellular processes of fracture healing. Efforts are emerging to identify early markers to predict impaired healing and possibly early intervention to alter these processes. Despite of the differences in clinical and preclinical research, opportunities exist to unify and improve the translational efforts between these arenas to develop and optimize our ability to assess and predict fracture healing, thereby improving the clinical care of these patients.
Collapse
Affiliation(s)
- Luke A Lopas
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1801 N. Senate Blvd Suite 535, Indianapolis, IN, USA.
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yohan Jang
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1801 N. Senate Blvd Suite 535, Indianapolis, IN, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Roman M Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1801 N. Senate Blvd Suite 535, Indianapolis, IN, USA
| |
Collapse
|
5
|
Chronic Pain after Bone Fracture: Current Insights into Molecular Mechanisms and Therapeutic Strategies. Brain Sci 2022; 12:brainsci12081056. [PMID: 36009119 PMCID: PMC9406150 DOI: 10.3390/brainsci12081056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/20/2022] [Accepted: 08/06/2022] [Indexed: 12/12/2022] Open
Abstract
Bone fracture following traumatic injury or due to osteoporosis is characterized by severe pain and motor impairment and is a major cause of global mortality and disability. Fracture pain often originates from mechanical distortion of somatosensory nerve terminals innervating bones and muscles and is maintained by central sensitization. Chronic fracture pain (CFP) after orthopedic repairs is considered one of the most critical contributors to interference with the physical rehabilitation and musculoskeletal functional recovery. Analgesics available for CFP in clinics not only have poor curative potency but also have considerable side effects; therefore, it is important to further explore the pathogenesis of CFP and identify safe and effective therapies. The typical physiopathological characteristics of CFP are a neuroinflammatory response and excitatory synaptic plasticity, but the specific molecular mechanisms involved remain poorly elucidated. Recent progress has deepened our understanding of the emerging properties of chemokine production, proinflammatory mediator secretion, caspase activation, neurotransmitter release, and neuron-glia interaction in initiating and sustaining synaptogenesis, synaptic strength, and signal transduction in central pain sensitization, indicating the possibility of targeting neuroinflammation to prevent and treat CFP. This review summarizes current literature on the excitatory synaptic plasticity, microgliosis, and microglial activation-associated signaling molecules and discusses the unconventional modulation of caspases and stimulator of interferon genes (STING) in the pathophysiology of CFP. We also review the mechanisms of action of analgesics in the clinic and their side effects as well as promising therapeutic candidates (e.g., specialized pro-resolving mediators, a caspase-6 inhibitor, and a STING agonist) for pain relief by the attenuation of neuroinflammation with the aim of better managing patients undergoing CFP in the clinical setting.
Collapse
|
6
|
Muwanga GPB, Siliezar-Doyle J, Ortiz AA, Kaslow J, Haight ES, Tawfik VL. The Tibial Fracture-Pin Model: A Clinically Relevant Mouse Model of Orthopedic Injury. J Vis Exp 2022:10.3791/63590. [PMID: 35969043 PMCID: PMC11161139 DOI: 10.3791/63590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024] Open
Abstract
The tibial fracture-pin model is a mouse model of orthopedic trauma and surgery that recapitulates the complex muscle, bone, nerve, and connective tissue damage that manifests with this type of injury in humans. This model was developed because previous models of orthopedic trauma did not include simultaneous injury to multiple tissue types (bone, muscle, nerves) and were not truly representative of human complex orthopedic trauma. The authors therefore modified previous models of orthopedic trauma and developed the tibial fracture-pin model. This modified fracture model consists of a unilateral open tibial fracture with intramedullary nail (IMN) internal fixation and simultaneous tibialis anterior (TA) muscle injury, resulting in mechanical allodynia that lasts up to 5 weeks post injury. This series of protocols outlines the detailed steps to perform the clinically relevant orthopedic trauma tibial fracture-pin model, followed by a modified hot plate assay to examine nociceptive changes after orthopedic injury. Taken together, these detailed, reproducible protocols will allow pain researchers to expand their toolkit for studying orthopedic trauma-induced pain.
Collapse
Affiliation(s)
- Gabriella P B Muwanga
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine; Neurosciences Graduate Program, Stanford University School of Medicine
| | - Janelle Siliezar-Doyle
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine; Neurosciences Graduate Program, Stanford University School of Medicine
| | - Angel Amadeus Ortiz
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
| | - Jasmine Kaslow
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
| | - Elena S Haight
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine;
| |
Collapse
|
7
|
Novel Techniques and Future Perspective for Investigating Critical-Size Bone Defects. Bioengineering (Basel) 2022; 9:bioengineering9040171. [PMID: 35447731 PMCID: PMC9027954 DOI: 10.3390/bioengineering9040171] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/31/2023] Open
Abstract
A critical-size bone defect is a challenging clinical problem in which a gap between bone ends will not heal and will become a nonunion. The current treatment is to harvest and transplant an autologous bone graft to facilitate bone bridging. To develop less invasive but equally effective treatment options, one needs to first have a comprehensive understanding of the bone healing process. Therefore, it is imperative to leverage the most advanced technologies to elucidate the fundamental concepts of the bone healing process and develop innovative therapeutic strategies to bridge the nonunion gap. In this review, we first discuss the current animal models to study critical-size bone defects. Then, we focus on four novel analytic techniques and discuss their strengths and limitations. These four technologies are mass cytometry (CyTOF) for enhanced cellular analysis, imaging mass cytometry (IMC) for enhanced tissue special imaging, single-cell RNA sequencing (scRNA-seq) for detailed transcriptome analysis, and Luminex assays for comprehensive protein secretome analysis. With this new understanding of the healing of critical-size bone defects, novel methods of diagnosis and treatment will emerge.
Collapse
|
8
|
Johnson EM, Yoon D, Biswal S, Curtin C, Fox P, Wilson TJ, Carroll I, Lutz A, Tawfik VL. Characteristics of Patients With Complex Limb Pain Evaluated Through an Interdisciplinary Approach Utilizing Magnetic Resonance Neurography. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 2:689402. [PMID: 35295513 PMCID: PMC8915577 DOI: 10.3389/fpain.2021.689402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
Patients with persistent complex limb pain represent a substantial diagnostic challenge. Physical exam, and tests such as nerve conduction, are often normal even though the patient suffers from severe pain. In 2015, we initiated a team-based approach to evaluate such patients. The approach included physicians from several specialties (Anesthesiology/Pain Medicine, Radiology, Plastic Surgery, Neurosurgery) combined with the use of advanced imaging with Magnetic Resonance Neurography (MRN). This preliminary case series discusses MRN findings identified in patients with previously difficult-to-diagnose peripheral limb pain and describes how this combination of approaches influenced our diagnosis and treatment plans. We extracted demographics, patient characteristics, presenting features, diagnostic tests performed, treatments provided, referral diagnosis and the diagnosis after interdisciplinary team evaluation from patient charts. We evaluated MRN and electrodiagnostic studies (EDX) ability to identify injured nerves. We compared abnormal findings from these diagnostics to patient reported outcome after ultrasound-guided nerve block. A total of 58 patients, 17 males and 41 females, were identified. The majority of patients presented with lower extremity pain (75%) and had prior surgery (43%). The most commonly identified abnormality on MRN was nerve signal alteration on fluid sensitive sequences, followed by caliber change and impingement. Comparing the outcome of diagnostic nerve blocks with abnormal nerve findings on MRN or EDX, we found that MRN had a sensitivity of 67% and specificity of 100% while for EDX it was 45 and 0%, respectively. After interdisciplinary discussion and imaging review, a more specific diagnosis was produced in 78% of evaluated cases opening up additional treatment pathways such as nerve-targeted surgery, which was performed in 36% cases. This descriptive case series demonstrates that a majority of patients evaluated by our team for complex limb pain were women with lower extremity pain resulting from surgery. In addition, an interdisciplinary team evaluation and the use of the moderately sensitive but highly specific MRN imaging modality resulted in a change in diagnosis for a majority of patients with complex limb pain. Future studies investigating patient outcomes after diagnosis change are currently underway based on the findings of this preliminary study.
Collapse
Affiliation(s)
- Emily M Johnson
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Daehyun Yoon
- Department of Radiology/Musculoskeletal Imaging, Stanford University School of Medicine, Stanford, CA, United States
| | - Sandip Biswal
- Department of Radiology/Musculoskeletal Imaging, Stanford University School of Medicine, Stanford, CA, United States
| | - Catherine Curtin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Paige Fox
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Thomas J Wilson
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Ian Carroll
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Amelie Lutz
- Department of Radiology/Musculoskeletal Imaging, Stanford University School of Medicine, Stanford, CA, United States
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|