1
|
Kim HM, Hyun CG. Drug Repurposing of Voglibose, a Diabetes Medication for Skin Health. Pharmaceuticals (Basel) 2025; 18:224. [PMID: 40006038 PMCID: PMC11859330 DOI: 10.3390/ph18020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Voglibose, an α-glucosidase inhibitor commonly prescribed to manage postprandial hyperglycemia in diabetes mellitus, demonstrates potential for repurposing as an anti-melanogenic agent. This study aims to explore the inhibitory effects of voglibose on melanogenesis and elucidate its molecular mechanisms, highlighting its possible applications in treating hyperpigmentation disorders. Methods: The anti-melanogenic effects of voglibose were investigated using B16F10 melanoma cells. Cell viability, melanin content, and tyrosinase activity were assessed following voglibose treatment. Western blot analysis was performed to examine changes in melanogenic proteins and transcription factors. The role of signaling pathways, including PKA/CREB, MAPK, PI3K/AKT, and GSK3β/β-Catenin, was analyzed. Primary human skin irritation tests were conducted to evaluate the topical safety of voglibose. Results: Voglibose significantly reduced melanin synthesis and tyrosinase activity in B16F10 cells in a dose-dependent manner. Western blot analysis revealed decreased expression of MITF, TRP-1, and TRP-2, indicating the inhibition of melanogenesis. Voglibose modulated key signaling pathways, including the suppression of PKA/CREB, MAPK, and AKT activation, while restoring GSK3β activity to inhibit β-catenin stabilization. Human skin irritation tests confirmed voglibose's safety for topical application, showing no adverse reactions at 50 and 100 μM concentrations. Conclusions: Voglibose demonstrates anti-melanogenic properties through the modulation of multiple signaling pathways and the inhibition of melanin biosynthesis. Its safety profile and efficacy suggest its potential as a repurposed drug for managing hyperpigmentation and advancing cosmeceutical applications.
Collapse
Affiliation(s)
| | - Chang-Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea;
| |
Collapse
|
2
|
Nakamura H, Fukuda M. Establishment of a synchronized tyrosinase transport system revealed a role of Tyrp1 in efficient melanogenesis by promoting tyrosinase targeting to melanosomes. Sci Rep 2024; 14:2529. [PMID: 38291221 PMCID: PMC10827793 DOI: 10.1038/s41598-024-53072-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/27/2024] [Indexed: 02/01/2024] Open
Abstract
Tyrosinase (Tyr) is a key enzyme in the process of melanin synthesis that occurs exclusively within specialized organelles called melanosomes in melanocytes. Tyr is synthesized and post-translationally modified independently of the formation of melanosome precursors and then transported to immature melanosomes by a series of membrane trafficking events that includes endoplasmic reticulum (ER)-to-Golgi transport, post-Golgi trafficking, and endosomal transport. Although several important regulators of Tyr transport have been identified, their precise role in each Tyr transport event is not fully understood, because Tyr is present in several melanocyte organelles under steady-state conditions, thereby precluding the possibility of determining where Tyr is being transported at any given moment. In this study, we established a novel synchronized Tyr transport system in Tyr-knockout B16-F1 cells by using Tyr tagged with an artificial oligomerization domain FM4 (named Tyr-EGFP-FM4). Tyr-EGFP-FM4 was initially trapped at the ER under oligomerized conditions, but at 30 min after chemical dissociation into monomers, it was transported to the Golgi and at 9 h reached immature melanosomes. Melanin was then detected at 12 h after the ER exit of Tyr-EGFP-FM4. By using this synchronized Tyr transport system, we were able to demonstrate that Tyr-related protein 1 (Tyrp1), another melanogenic enzyme, is a positive regulator of efficient Tyr targeting to immature melanosomes. Thus, the synchronized Tyr transport system should serve as a useful tool for analyzing the molecular mechanism of each Tyr transport event in melanocytes as well as in the search for new drugs or cosmetics that artificially regulate Tyr transport.
Collapse
Affiliation(s)
- Hikari Nakamura
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-Ku, Sendai, Miyagi, 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-Ku, Sendai, Miyagi, 980-8578, Japan.
| |
Collapse
|
3
|
Liu J, Xu X, Zhou J, Sun G, Li Z, Zhai L, Wang J, Ma R, Zhao D, Jiang R, Sun L. Phenolic acids in Panax ginseng inhibit melanin production through bidirectional regulation of melanin synthase transcription via different signaling pathways. J Ginseng Res 2023; 47:714-725. [PMID: 38107393 PMCID: PMC10721457 DOI: 10.1016/j.jgr.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 12/19/2023] Open
Abstract
Background Our previous investigation indicated that the preparation of Panax ginseng Meyer (P. ginseng) inhibited melanogenesis. It comprised salicylic acid (SA), protocatechuic acid (PA), p-coumaric acid (p-CA), vanillic acid (VA), and caffeic acid (CA). In this investigation, the regulatory effects of P. ginseng phenolic acid monomers on melanin production were assessed. Methods In vitro and in vivo impact of phenolic acid monomers were assessed. Results SA, PA, p-CA and VA inhibited tyrosinase (TYR) to reduce melanin production, whereas CA had the opposite effects. SA, PA, p-CA and VA significantly downregulated the melanocortin 1 receptor (MC1R), cycle AMP (cAMP), protein kinase A (PKA), cycle AMP-response element-binding protein (CREB), microphthalmia-associated transcription factor (MITF) pathway, reducing mRNA and protein levels of TYR, tyrosinase-related protein 1 (TYRP1), and TYRP2. Moreover, CA treatment enhanced the cAMP, PKA, and CREB pathways to promote MITF mRNA level and phosphorylation. It also alleviated MITF protein level in α-MSH-stimulated B16F10 cells, comparable to untreated B16F10, increasing the expression of phosphorylation glycogen synthase kinase 3β (p-GSK3β), β-catenin, p-ERK/ERK, and p-p38/p38. Furthermore, the GSK3β inhibitor promoted p-GSK3β and p-MITF expression, as observed in CA-treated cells. Moreover, p38 and ERK inhibitors inhibited CA-stimulated p-p38/p38, p-ERK/ERK, and p-MITF increase, which had negative binding energies with MC1R, as depicted by molecular docking. Conclusion P. ginseng roots' phenolic acid monomers can safely inhibit melanin production by bidirectionally regulating melanin synthase transcription. Furthermore, they reduced MITF expression via MC1R/cAMP/PKA signaling pathway and enhanced MITF post-translational modification via Wnt/mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Jianzeng Liu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaohao Xu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jingyuan Zhou
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Guang Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Zhenzhuo Li
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Lu Zhai
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jing Wang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Rui Ma
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| |
Collapse
|
4
|
Peterson SM, Watowich MM, Renner LM, Martin S, Offenberg E, Lea A, Montague MJ, Higham JP, Snyder-Mackler N, Neuringer M, Ferguson B. Genetic variants in melanogenesis proteins TYRP1 and TYR are associated with the golden rhesus macaque phenotype. G3 (BETHESDA, MD.) 2023; 13:jkad168. [PMID: 37522525 PMCID: PMC10542561 DOI: 10.1093/g3journal/jkad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/09/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Nonhuman primates (NHPs) are vital translational research models due to their high genetic, physiological, and anatomical homology with humans. The "golden" rhesus macaque (Macaca mulatta) phenotype is a naturally occurring, inherited trait with a visually distinct pigmentation pattern resulting in light blonde colored fur. Retinal imaging also reveals consistent hypopigmentation and occasional foveal hypoplasia. Here, we describe the use of genome-wide association in 2 distinct NHP populations to identify candidate variants in genes linked to the golden phenotype. Two missense variants were identified in the Tyrosinase-related protein 1 gene (Asp343Gly and Leu415Pro) that segregate with the phenotype. An additional and distinct association was also found with a Tyrosinase variant (His256Gln), indicating the light-colored fur phenotype can result from multiple genetic mechanisms. The implicated genes are related through their contribution to the melanogenesis pathway. Variants in these 2 genes are known to cause pigmentation phenotypes in other species and to be associated with oculocutaneous albinism in humans. The novel associations presented in this study will permit further investigations into the role these proteins and variants play in the melanogenesis pathway and model the effects of genetic hypopigmentation and altered melanogenesis in a naturally occurring nonhuman primate model.
Collapse
Affiliation(s)
- Samuel M Peterson
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Marina M Watowich
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Lauren M Renner
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Samantha Martin
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Emma Offenberg
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Amanda Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Michael J Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY 10003, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- School for Human Evolution & Social Change, Arizona State University, Tempe, AZ 85281, USA
| | - Martha Neuringer
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Betsy Ferguson
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| |
Collapse
|
5
|
Tingaud-Sequeira A, Mercier E, Michaud V, Pinson B, Gazova I, Gontier E, Decoeur F, McKie L, Jackson IJ, Arveiler B, Javerzat S. The Dct−/− Mouse Model to Unravel Retinogenesis Misregulation in Patients with Albinism. Genes (Basel) 2022; 13:genes13071164. [PMID: 35885947 PMCID: PMC9324463 DOI: 10.3390/genes13071164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
We have recently identified DCT encoding dopachrome tautomerase (DCT) as the eighth gene for oculocutaneous albinism (OCA). Patients with loss of function of DCT suffer from eye hypopigmentation and retinal dystrophy. Here we investigate the eye phenotype in Dct−/− mice. We show that their retinal pigmented epithelium (RPE) is severely hypopigmented from early stages, contrasting with the darker melanocytic tissues. Multimodal imaging reveals specific RPE cellular defects. Melanosomes are fewer with correct subcellular localization but disrupted melanization. RPE cell size is globally increased and heterogeneous. P-cadherin labeling of Dct−/− newborn RPE reveals a defect in adherens junctions similar to what has been described in tyrosinase-deficient Tyrc/c embryos. The first intermediate of melanin biosynthesis, dihydroxyphenylalanine (L-Dopa), which is thought to control retinogenesis, is detected in substantial yet significantly reduced amounts in Dct−/− postnatal mouse eyecups. L-Dopa synthesis in the RPE alone remains to be evaluated during the critical period of retinogenesis. The Dct−/− mouse should prove useful in understanding the molecular regulation of retinal development and aging of the hypopigmented eye. This may guide therapeutic strategies to prevent vision deficits in patients with albinism.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Rare Diseases Genetics and Metabolism, INSERM U1211, SBM Department, University of Bordeaux, F-33076 Bordeaux, France; (A.T.-S.); (E.M.); (V.M.); (B.A.)
| | - Elina Mercier
- Rare Diseases Genetics and Metabolism, INSERM U1211, SBM Department, University of Bordeaux, F-33076 Bordeaux, France; (A.T.-S.); (E.M.); (V.M.); (B.A.)
| | - Vincent Michaud
- Rare Diseases Genetics and Metabolism, INSERM U1211, SBM Department, University of Bordeaux, F-33076 Bordeaux, France; (A.T.-S.); (E.M.); (V.M.); (B.A.)
- Molecular Genetics Laboratory, Bordeaux University Hospital, F-33076 Bordeaux, France
| | - Benoît Pinson
- SAM, TBMcore, CNRS UAR 3427, INSERM US005, Université Bordeaux, F-33076 Bordeaux, France;
| | - Ivet Gazova
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; (I.G.); (L.M.); (I.J.J.)
| | - Etienne Gontier
- Bordeaux Imaging Center, CNRS, INSERM, BIC, UMS 3420, US 4, University Bordeaux, F-33076 Bordeaux, France; (E.G.); (F.D.)
| | - Fanny Decoeur
- Bordeaux Imaging Center, CNRS, INSERM, BIC, UMS 3420, US 4, University Bordeaux, F-33076 Bordeaux, France; (E.G.); (F.D.)
| | - Lisa McKie
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; (I.G.); (L.M.); (I.J.J.)
| | - Ian J. Jackson
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, UK; (I.G.); (L.M.); (I.J.J.)
| | - Benoît Arveiler
- Rare Diseases Genetics and Metabolism, INSERM U1211, SBM Department, University of Bordeaux, F-33076 Bordeaux, France; (A.T.-S.); (E.M.); (V.M.); (B.A.)
- Molecular Genetics Laboratory, Bordeaux University Hospital, F-33076 Bordeaux, France
| | - Sophie Javerzat
- Rare Diseases Genetics and Metabolism, INSERM U1211, SBM Department, University of Bordeaux, F-33076 Bordeaux, France; (A.T.-S.); (E.M.); (V.M.); (B.A.)
- Correspondence:
| |
Collapse
|
6
|
Krzemińska A, Kwiatos N, Arenhart Soares F, Steinbüchel A. Theoretical Studies of Cyanophycin Dipeptides as Inhibitors of Tyrosinases. Int J Mol Sci 2022; 23:ijms23063335. [PMID: 35328756 PMCID: PMC8950311 DOI: 10.3390/ijms23063335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
The three-dimensional structure of tyrosinase has been crystallized from many species but not from Homo sapiens. Tyrosinase is a key enzyme in melanin biosynthesis, being an important target for melanoma and skin-whitening cosmetics. Several studies employed the structure of tyrosinase from Agaricus bisporus as a model enzyme. Recently, 98% of human genome proteins were elucidated by AlphaFold. Herein, the AlphaFold structure of human tyrosinase and the previous model were compared. Moreover, tyrosinase-related proteins 1 and 2 were included, along with inhibition studies employing kojic and cinnamic acids. Peptides are widely studied for their inhibitory activity of skin-related enzymes. Cyanophycin is an amino acid polymer produced by cyanobacteria and is built of aspartic acid and arginine; arginine can be also replaced by other amino acids. A new set of cyanophycin-derived dipeptides was evaluated as potential inhibitors. Aspartate–glutamate showed the strongest interaction and was chosen as a leading compound for future studies.
Collapse
|
7
|
Dolinska MB, Woods T, Osuna I, Sergeev YV. Protein Biochemistry and Molecular Modeling of the Intra-Melanosomal Domain of Human Recombinant Tyrp2 Protein and OCA8-Related Mutant Variants. Int J Mol Sci 2022; 23:ijms23031305. [PMID: 35163231 PMCID: PMC8836267 DOI: 10.3390/ijms23031305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
Tyrosinase-related protein 2 (Tyrp2) is involved in the melanogenesis pathway, catalyzing the tautomerization of dopachrome to 5,6-dihydroxyindole-2-carboxylic acid (DHICA). Recently, a new type of albinism was discovered with disease-causing mutations in the TYRP2 gene. Here, for the first time, we characterized the intra-melanosomal protein domain of Tyrp2 (residues 1-474) and missense variants C40S and C61W, which mimic the alterations found in genetic studies. Recombinant proteins were produced in the Trichoplusia Ni (Ti. Ni) larvae, purified by a combination of immobilized metal affinity (IMAC) and gel-filtration (GF) chromatography, and biochemically characterized. The mutants showed the protein expression in the lysates such as the wild type; however, undetectable protein yield after two steps of purification exhibited their misfolding and instability. In addition, the misfolding effect of the mutations was confirmed computationally using homology modeling and molecular docking. Together, experiments in vitro and computer simulations indicated the critical role of the Cys-rich domain in the Tyrp2 protein stability. The results are consistent with molecular modeling, global computational mutagenesis, and clinical data, proving the significance of genetic alterations in cysteine residues, which could cause oculocutaneous albinism type 8.
Collapse
|