1
|
Gao S, Wang X, Lu Y, Liu Y, Jiang Q, Feng J, Kong W, Lin L, Cheng H. Current scenario and challenges of clinical pharmacists to implement pharmaceutical care in DRG/DIP payment hospitals in China: a qualitative interview study. Front Public Health 2024; 12:1339504. [PMID: 38444434 PMCID: PMC10912177 DOI: 10.3389/fpubh.2024.1339504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Purpose The Diagnosis-Related Group (DRG) or Diagnosis-Intervention Packet (DIP) payment system, now introduced in China, intends to streamline healthcare billing practices. However, its implications for clinical pharmacists, pivotal stakeholders in the healthcare system, remain inadequately explored. This study sought to assess the perceptions, challenges, and roles of clinical pharmacists in China following the introduction of the DRG or DIP payment system. Methods Qualitative interviews were conducted among a sample of clinical pharmacists. Ten semi-structured interviews were conducted, either online or face to face. Thematic analysis was employed to identify key insights and concerns related to their professional landscape under the DRG or DIP system. Results Clinical pharmacists exhibited variable awareness levels about the DRG or DIP system. Their roles have undergone shifts, creating a balance between traditional responsibilities and new obligations dictated by the DRG or DIP system. Professional development, particularly concerning health economics and DRG-based or DIP-based patient care, was highlighted as a key need. There were calls for policy support at both healthcare and national levels and a revised, holistic performance assessment system. The demand for more resources, be it in training platforms or personnel, was a recurrent theme. Conclusion The DRG or DIP system's introduction in China poses both opportunities and challenges for clinical pharmacists. Addressing awareness gaps, offering robust policy support, ensuring adequate resource allocation, and recognizing the evolving role of pharmacists are crucial for harmoniously integrating the DRG or DIP system into the Chinese healthcare paradigm.
Collapse
Affiliation(s)
- Suyu Gao
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuanxuan Wang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yun Lu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yunkun Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiaoli Jiang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiajia Feng
- Hospital Management Institute of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weihua Kong
- Hospital Management Institute of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Likai Lin
- Hospital Management Institute of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hong Cheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Wang W, Fu C, Lin M, Lu Y, Lian S, Xie X, Zhou G, Li W, Zhang Y, Jia L, Zhong C, Huang M. Fucoxanthin prevents breast cancer metastasis by interrupting circulating tumor cells adhesion and transendothelial migration. Front Pharmacol 2022; 13:960375. [PMID: 36160416 PMCID: PMC9500434 DOI: 10.3389/fphar.2022.960375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is the leading cause of cancer-related death and a critical challenge in improving cancer treatment today. Circulating tumor cells (CTCs) adhesion to and across the vascular endothelium are critical steps in the establishment of micrometastatic foci away from the primary tumor. Therefore, we believe that interrupting CTCs adhesion to endothelium and transendothelial migration may efficiently prevent cancer metastasis. Fucoxanthin (Fx) is an algal carotenoid widely distributed in brown algae, macroalgae, and diatoms. Previous studies have found that Fx has various pharmacological activities, including antidiabetic, antioxidant, anti-inflammatory, anti-obesity, antimalarial, anticancer, and so on. However, it remains unclear whether Fx has a preventive effect on cancer metastasis. Here, we found that Fx interrupts breast cancer cells MCF-7 adhesion to endothelium and transendothelial migration, thus inhibiting CTCs-based pulmonary metastasis in vivo. The hetero-adhesion assay showed that Fx significantly inhibited the expression of inflammatory factor-induced cell adhesion molecules (CAMs) and the resulting adhesion between MCF-7 cells and endothelial cells. The wound-healing and transwell assays showed that Fx significantly inhibited the motility, invasion, and transendothelial migration abilities of MCF-7 cells. However, the same concentration of Fx did not significantly alter the cell viability, cell cycle, apoptosis, and ROS of breast cancer cells, thus excluding the possibility that Fx inhibits MCF-7 cell adhesion and transendothelial migration through cytotoxicity. Mechanistically, Fx inhibits the expression of CAMs on endothelial cells by inhibiting the NF-кB signaling pathway by down-regulating the phosphorylation level of IKK-α/β, IкB-α, and NF-кB p65. Fx inhibits transendothelial migration of MCF-7 cells by inhibiting Epithelial-to-mesenchymal transition (EMT), PI3K/AKT, and FAK/Paxillin signaling pathways. Moreover, we demonstrated that Fx significantly inhibits the formation of lung micrometastatic foci in immunocompetent syngeneic mouse breast cancer metastasis models. We also showed that Fx enhances antitumor immune responses by substantially increasing the subsets of cytotoxic T lymphocytes in the peripheral immune system. This new finding provides a basis for the application of Fx in cancer metastatic chemoprevention and suggests that interruption of the CTCs adhesion to endothelium and transendothelial migration may serve as a new avenue for cancer metastatic chemoprevention.
Collapse
Affiliation(s)
- Weiyu Wang
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Chengbin Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Breast Surgery Institute, Fujian Medical University, Fuzhou, China
| | - Mengting Lin
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Yusheng Lu
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
- *Correspondence: Yusheng Lu, ; Chunlian Zhong, ; Mingqing Huang,
| | - Shu Lian
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Xiaodong Xie
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Guiyu Zhou
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Wulin Li
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Yiping Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Lee Jia
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
| | - Chunlian Zhong
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Material and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
- *Correspondence: Yusheng Lu, ; Chunlian Zhong, ; Mingqing Huang,
| | - Mingqing Huang
- Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- *Correspondence: Yusheng Lu, ; Chunlian Zhong, ; Mingqing Huang,
| |
Collapse
|