1
|
Adebayo G, Ayanda OI, Rottmann M, Ajibaye OS, Oduselu G, Mulindwa J, Ajani OO, Aina O, Mäser P, Adebiyi E. The Importance of Murine Models in Determining In Vivo Pharmacokinetics, Safety, and Efficacy in Antimalarial Drug Discovery. Pharmaceuticals (Basel) 2025; 18:424. [PMID: 40143200 PMCID: PMC11944934 DOI: 10.3390/ph18030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
New chemical entities are constantly being investigated towards antimalarial drug discovery, and they require animal models for toxicity and efficacy testing. Murine models show physiological similarities to humans and are therefore indispensable in the search for novel antimalarial drugs. They provide a preclinical basis (following in vitro assessments of newly identified lead compounds) for further assessment in the drug development pipeline. Specific mouse strains, non-humanized and humanized, have successfully been infected with rodent Plasmodium species and the human Plasmodium species, respectively. Infected mice provide a platform for the assessment of treatment options being sought. In vivo pharmacokinetic evaluations are necessary when determining the fate of potential antimalarials in addition to the efficacy assessment of these chemical entities. This review describes the role of murine models in the drug development pipeline. It also explains some in vivo pharmacokinetic, safety, and efficacy parameters necessary for making appropriate choices of lead compounds in antimalarial drug discovery. Despite the advantages of murine models in antimalarial drug discovery, certain limitations are also highlighted.
Collapse
Affiliation(s)
- Glory Adebayo
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
- Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, Yaba PMB 2013, Nigeria; (O.S.A.); (O.A.)
| | - Opeyemi I. Ayanda
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland; (M.R.); (P.M.)
| | - Olusola S. Ajibaye
- Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, Yaba PMB 2013, Nigeria; (O.S.A.); (O.A.)
| | - Gbolahan Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Department of Chemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
| | - Julius Mulindwa
- Department of Biochemistry and Sports Science, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Olayinka O. Ajani
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Department of Chemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
| | - Oluwagbemiga Aina
- Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, Yaba PMB 2013, Nigeria; (O.S.A.); (O.A.)
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland; (M.R.); (P.M.)
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- African Centre of Excellence in Bioinformatics & Data Intensive Science (ACE), Kampala P.O. Box 7062, Uganda
- Infectious Diseases Institute, Makerere University, Kampala P.O. Box 22418, Uganda
| |
Collapse
|
2
|
Seo CS, Chun J, Song KH. Simultaneous Component Analysis of Akebia quinata Seeds (Lardizabalaceae) by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry for Quality and Cytotoxicity Assessment. PLANTS (BASEL, SWITZERLAND) 2025; 14:669. [PMID: 40094529 PMCID: PMC11901900 DOI: 10.3390/plants14050669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Akebia quinata seeds (AQSs) are used as an analgesic, antiphlogistic, and diuretic in traditional herbal medicine. We developed an ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) simultaneous component analysis method to analyze eight compounds (chlorogenic acid, isochlorogenic acid A, isochlorogenic acid C, hederacolchiside F, hederacoside C, dipsacoside B, akebia saponin D, and α-hederin) as markers for the quality assessment of AQSs. The separation of the eight analytes was performed in an Acquity UPLC BEH C18 reversed-phase analytical column. The method was validated with respect to linearity (coefficient of determination ≥ 0.994), recovery (90.32-108.18%; relative standard deviation (RSD) < 10.0%), and precision (RSD < 10%). The analysis of the AQSs confirmed that the eight components were found in concentrations of 0.42-9.07 mg/g. The cytotoxicity of the AQS extract and the eight compounds against human cancer cell lines, including MDA-MB-231 (breast), A549 (lung), HCT 116 (colon), AsPC-1 (pancreas), and A2780 (ovarian), was also assessed, with cisplatin used as a positive control. In addition, dipsacoside B showed high cytotoxicity in all cell lines. This assay will help to enhance efficacy and clinical research as well as provide a validated quality assessment of AQS extract and related traditional herbal medicines.
Collapse
Affiliation(s)
- Chang-Seob Seo
- KM Science Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Jaemoo Chun
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (J.C.); (K.H.S.)
| | - Kwang Hoon Song
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (J.C.); (K.H.S.)
| |
Collapse
|
3
|
Ma Y, Zhao Y, Luo M, Jiang Q, Liu S, Jia Q, Bai Z, Wu F, Xie J. Advancements and challenges in pharmacokinetic and pharmacodynamic research on the traditional Chinese medicine saponins: a comprehensive review. Front Pharmacol 2024; 15:1393409. [PMID: 38774213 PMCID: PMC11106373 DOI: 10.3389/fphar.2024.1393409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
Recent research on traditional Chinese medicine (TCM) saponin pharmacokinetics has revealed transformative breakthroughs and challenges. The multicomponent nature of TCM makes it difficult to select representative indicators for pharmacokinetic studies. The clinical application of saponins is limited by their low bioavailability and short half-life, resulting in fluctuating plasma concentrations. Future directions should focus on novel saponin compounds utilizing colon-specific delivery and osmotic pump systems to enhance oral bioavailability. Optimizing drug combinations, such as ginsenosides with aspirin, shows therapeutic potential. Rigorous clinical validation is essential for practical applications. This review emphasizes a transformative era in saponin research, highlighting the need for clinical validation. TCM saponin pharmacokinetics, guided by traditional principles, are in development, utilizing multidisciplinary approaches for a comprehensive understanding. This research provides a theoretical basis for new clinical drugs and supports rational clinical medication.
Collapse
Affiliation(s)
- Yuhan Ma
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yongxia Zhao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Mingxia Luo
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qin Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Sha Liu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qi Jia
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Zhixun Bai
- Organ Transplant Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Faming Wu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jian Xie
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Cui L, Ma C, Shi W, Yang C, Wu J, Wu Z, Lou Y, Fan G. A Systematic Study of Yiqi Qubai Standard Decoction for Treating Vitiligo Based on UPLC-Q-TOF/MS Combined with Chemometrics, Molecular Docking, and Cellular and Zebrafish Assays. Pharmaceuticals (Basel) 2023; 16:1716. [PMID: 38139842 PMCID: PMC10747336 DOI: 10.3390/ph16121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The Yiqi Qubai (YQ) formula is a hospital preparation for treating vitiligo in China that has had reliable efficacy for decades. The formula consists of four herbs; however, the extraction process to produce the formula is obsolete and the active ingredients and mechanisms remain unknown. Therefore, in this paper, fingerprints were combined with the chemometrics method to screen high-quality herbs for the preparation of the YQ standard decoction (YQD). Then, the YQD preparation procedure was optimized using response surface methodology. A total of 44 chemical constituents, as well as 36 absorption components (in rat plasma) of YQD, were identified via UPLC-Q-TOF/MS. Based on the ingredients, the quality control system of YQD was optimized by establishing the SPE-UPLC-Q-TOF/MS identification method and the HPLC quantification method. Network pharmacological analysis and molecular docking showed that carasinaurone, calycosin-7-O-β-d-glucoside, methylnissolin-3-O-glucoside, genkwanin, akebia saponin D, formononetin, akebia saponin B, and apigenin may be the key active components for treating vitiligo; the core targets associated with them were AKT1, MAPK1, and mTOR, whereas the related pathways were the PI3K-Akt, MAPK, and FoxO signaling pathways. Cellular assays showed that YQD could promote melanogenesis and tyrosinase activity, as well as the transcription and expression of tyrosinase-associated proteins (i.e., TRP-1) in B16F10 cells. In addition, YQD also increased extracellular tyrosinase activity. Further efficacy validation showed that YQD significantly promotes melanin production in zebrafish. These may be the mechanisms by which YQD improves the symptoms of vitiligo. This is the first systematic study of the YQ formula that has optimized the standard decoction preparation method and investigated the active ingredients, quality control, efficacy, and mechanisms of YQD. The results of this study lay the foundations for the clinical application and further development of the YQ formula.
Collapse
Affiliation(s)
- Lijun Cui
- School of Medicine, Tongji University, Shanghai 200331, China;
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Cui Ma
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China (C.Y.); (J.W.); (Z.W.)
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Wenqing Shi
- Department of Pharmacy, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
| | - Chen Yang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China (C.Y.); (J.W.); (Z.W.)
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiangping Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China (C.Y.); (J.W.); (Z.W.)
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China (C.Y.); (J.W.); (Z.W.)
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Yuefen Lou
- School of Medicine, Tongji University, Shanghai 200331, China;
- Department of Pharmacy, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
| | - Guorong Fan
- School of Medicine, Tongji University, Shanghai 200331, China;
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China (C.Y.); (J.W.); (Z.W.)
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|
5
|
Xie L, Diao Z, Xia J, Zhang J, Xu Y, Wu Y, Liu Z, Jiang C, Peng Y, Song Z, Wang G, Zhu J, Sun J. Comprehensive Evaluation of Metabolism and the Contribution of the Hepatic First-Pass Effect in the Bioavailability of Glabridin in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1944-1956. [PMID: 36649475 DOI: 10.1021/acs.jafc.2c06460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Glabridin is a bioactive isoflavan, which has a wide range of biological properties and is widely used in the market of health products and dietary supplements. However, the transformation pathway of glabridin in vivo is unclear, and the bioavailability is controversial among different studies. Therefore, a new HPLC-Q-TOF method was developed to analyze and identify the prototype and metabolites of glabridin in rats. A total of 63 compounds were identified, including hydroxylation, demethylation, acetylation, demethylation to carboxylation, glucuronidation, and sulfate conjugation, and 43 of which were new metabolites that had not been reported. Additionally, our study verified that the oral bioavailability of glabridin was 6.63 ± 2.29% in rats. Furthermore, we found that the hepatic first-pass effect was 62.12 ± 15.7% for glabridin. These results indicated that a high hepatic first-pass effect and extensive metabolism of glabridin in vivo may lead to its limited oral bioavailability.
Collapse
Affiliation(s)
- Like Xie
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Zhipeng Diao
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Jing Xia
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Jing Zhang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Yao Xu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Yapeng Wu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Zihou Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Chengwen Jiang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Ying Peng
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Zhe Song
- Instrumental Analysis Center, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| | - Junrong Zhu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu210009, China
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu210009, China
| | - Jianguo Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu210009, China
| |
Collapse
|