1
|
Guan X, Li W, Wang Y, Zhao Q, Yu X, Jiang J, Bian W, Xu C, Sun Y, Zhang C. The mechanism of rh-endostatin-induced cardiotoxicity and its protection by dihydromyricetin[in vivo/in vitro, C57BL/6 mice, AC16 and hiPSC-CMs]. Toxicol Lett 2023; 377:29-37. [PMID: 36739041 DOI: 10.1016/j.toxlet.2023.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Recombinant human endostatin (rh-endostatin) is an anti-angiogenic drug, which is used for the treatment of advanced non-small-cell lung cancer (NSCLC) and other cancers. However, its side effects, especially the cardiotoxicity with unclear mechanisms limit its wide application in clinical practice. In this study, human cardiomyocyte cell line AC16 and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) treated with different doses of rh-endostatin were used to analyze its effect on cardiac cell toxicity. The results revealed that rh-endostatin dose-dependently enhanced cardiomyocyte apoptosis through Apaf-1 apoptotic factor and apoptosis-related proteins such as p53. rh-endostatin-induced changes of mitochondrial function and mitophagy were involved in rh-endostatin-mediated cardiac cell toxicity. Rh-endostatin-induced cardiotoxicity was further verified in vivo in mice. Interestingly, Rh-endostatin-induced cardiotoxicity was inhibited by dihydromyricetin (DHM) both in cultured cells in vitro and in mouse hearts in vivo. The study provides new inside into rh-endostatin-induced cardiotoxicity and identified a novel potential medication DHM to overcome the serious adverse effect.
Collapse
Affiliation(s)
- Xiaoran Guan
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Wuquan Li
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yong Wang
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Qun Zhao
- Shandong Simcere Bio-Pharmaceutical Co., Ltd, Yantai 264006, China
| | - Xinru Yu
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Jing Jiang
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Weihua Bian
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Cong Xu
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yeying Sun
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Chunxiang Zhang
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China; Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Nucleic Acid Medicine of Luzhou Key Laboratory, Metabolic Vascular Disease Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
2
|
Zhou B, Shi X, Tang X, Zhao Q, Wang L, Yao F, Hou Y, Wang X, Feng W, Wang L, Sun X, Wang L, Hu S. Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes. Signal Transduct Target Ther 2022; 7:254. [PMID: 35882831 PMCID: PMC9325714 DOI: 10.1038/s41392-022-01044-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/11/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular diseases are the most common cause of death globally. Accurately modeling cardiac homeostasis, dysfunction, and drug response lies at the heart of cardiac research. Adult human primary cardiomyocytes (hPCMs) are a promising cellular model, but unstable isolation efficiency and quality, rapid cell death in culture, and unknown response to cryopreservation prevent them from becoming a reliable and flexible in vitro cardiac model. Combing the use of a reversible inhibitor of myosin II ATPase, (-)-blebbistatin (Bleb), and multiple optimization steps of the isolation procedure, we achieved a 2.74-fold increase in cell viability over traditional methods, accompanied by better cellular morphology, minimally perturbed gene expression, intact electrophysiology, and normal neurohormonal signaling. Further optimization of culture conditions established a method that was capable of maintaining optimal cell viability, morphology, and mitochondrial respiration for at least 7 days. Most importantly, we successfully cryopreserved hPCMs, which were structurally, molecularly, and functionally intact after undergoing the freeze-thaw cycle. hPCMs demonstrated greater sensitivity towards a set of cardiotoxic drugs, compared to human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Further dissection of cardiomyocyte drug response at both the population and single-cell transcriptomic level revealed that hPCM responses were more pronouncedly enriched in cardiac function, whereas hiPSC-CMs responses reflected cardiac development. Together, we established a full set of methodologies for the efficient isolation and prolonged maintenance of functional primary adult human cardiomyocytes in vitro, unlocking their potential as a cellular model for cardiovascular research, drug discovery, and safety pharmacology.
Collapse
Affiliation(s)
- Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Xun Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quanyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Le Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Yao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongfeng Hou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,18 Jinma Industrial Park, Fangshan District, Beijing, China
| | - Xianqiang Wang
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Feng
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liqing Wang
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaogang Sun
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China. .,Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Narkar A, Willard JM, Blinova K. Chronic Cardiotoxicity Assays Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs). Int J Mol Sci 2022; 23:ijms23063199. [PMID: 35328619 PMCID: PMC8953833 DOI: 10.3390/ijms23063199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/18/2022] Open
Abstract
Cardiomyocytes (CMs) differentiated from human induced pluripotent stem cells (hiPSCs) are increasingly used in cardiac safety assessment, disease modeling and regenerative medicine. A vast majority of cardiotoxicity studies in the past have tested acute effects of compounds and drugs; however, these studies lack information on the morphological or physiological responses that may occur after prolonged exposure to a cardiotoxic compound. In this review, we focus on recent advances in chronic cardiotoxicity assays using hiPSC-CMs. We summarize recently published literature on hiPSC-CMs assays applied to chronic cardiotoxicity induced by anticancer agents, as well as non-cancer classes of drugs, including antibiotics, anti-hepatitis C virus (HCV) and antidiabetic drugs. We then review publications on the implementation of hiPSC-CMs-based assays to investigate the effects of non-pharmaceutical cardiotoxicants, such as environmental chemicals or chronic alcohol consumption. We also highlight studies demonstrating the chronic effects of smoking and implementation of hiPSC-CMs to perform genomic screens and metabolomics-based biomarker assay development. The acceptance and wide implementation of hiPSC-CMs-based assays for chronic cardiotoxicity assessment will require multi-site standardization of assay protocols, chronic cardiac maturity marker reproducibility, time points optimization, minimal cellular variation (commercial vs. lab reprogrammed), stringent and matched controls and close clinical setting resemblance. A comprehensive investigation of long-term repeated exposure-induced effects on both the structure and function of cardiomyocytes can provide mechanistic insights and recapitulate drug and environmental cardiotoxicity.
Collapse
Affiliation(s)
- Akshay Narkar
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - James M. Willard
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Ksenia Blinova
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
- Correspondence:
| |
Collapse
|