1
|
Gumkowska-Sroka O, Chudek A, Owczarek A, Kuźnik-Trocha K, Kotyla K, Kurdybacha J, Chudek J, Komosińska-Vassev K, Winsz-Szczotka K, Olczyk K, Kotyla P. The Potential of Cardiac Biomarkers in Differentiating Disease Subtypes in Patients with Systemic Sclerosis: Focus on GDF15, MR-pro ANP, and suPAR. Int J Mol Sci 2025; 26:3938. [PMID: 40362179 PMCID: PMC12071831 DOI: 10.3390/ijms26093938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/22/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Systemic sclerosis, a connective tissue disease of unknown etiology and unpredictable outcomes, is characterized by the fibrosis of the skin and internal organs, vasculopathy, and immune system dysregulation. The disease is classified into two main subtypes, which differ in clinical presentation, complications, and prognosis. While several biomarkers have been proposed to distinguish between these subtypes, none have achieved high sensitivity and specificity. The search for dependable markers that can differentiate between the two primary subtypes of systemic sclerosis continues. To address this gap, our study evaluated the utility of novel cardiac biomarkers, including growth differentiation factor 15 (GDF15), galectin-3, mid-regional pro-atrial natriuretic peptide (MR-proANP), glutathione S-transferase π, mid-regional adrenomedullin, and soluble urokinase plasminogen activator receptor (suPAR), in a cohort of 79 patients with both lcSSc and dSSc subtypes. The results demonstrated a significant elevation of GDF15 (medians: 2.07 vs. 1.10 ng/L; p < 0.001) and MR-proANP (92.55 vs. 65.60 pmol/L; p < 0.05) levels in SSc patients compared to healthy controls. Moreover, GDF15 (1.65 vs. 2.34 ng/mL; p < 0.05), MR-proANP (80.87 vs. 109.27 pmol/L; p < 0.05), and suPAR (1.83 vs. 2.44 ng/mL; p < 0.05) levels were notably higher in patients with dSSc compared to those with lcSSc. In the ROC analysis, only GDF-15, MR-proANP, and suPAR proved to have a statistically significant area under the curve (AUC). Patients with the GDF-15 ≥ 2182 ng/mL, MR-prANP ≥ 85.808 pmol/L, and suPAR ≥ 2.315 ng/mL have more than six-, eight-, and seven-times-higher odds for dcSSc, respectively. These findings highlight the potential of GDF15, suPAR, and MR-proANP as biomarkers for differentiating between the two main subtypes of systemic sclerosis.
Collapse
Affiliation(s)
- Olga Gumkowska-Sroka
- Department of Internal Medicine Rheumatology and Clinical Immunology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-635 Katowice, Poland; (O.G.-S.); (K.K.); (J.K.)
- Department of Rheumatology and Clinical Immunology, Voivodeship Hospital, No. 5, 41-200 Sosnowiec, Poland
| | - Anna Chudek
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (A.C.); (A.O.)
| | - Aleksander Owczarek
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (A.C.); (A.O.)
| | - Kornelia Kuźnik-Trocha
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Katowice, Poland; (K.K.-T.); (K.K.-V.); (K.W.-S.)
| | - Kacper Kotyla
- Department of Internal Medicine Rheumatology and Clinical Immunology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-635 Katowice, Poland; (O.G.-S.); (K.K.); (J.K.)
| | - Jan Kurdybacha
- Department of Internal Medicine Rheumatology and Clinical Immunology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-635 Katowice, Poland; (O.G.-S.); (K.K.); (J.K.)
| | - Jerzy Chudek
- Department of Internal Medicine and Oncological Chemotherapy, Medical University of Silesia, 40-029 Katowice, Poland;
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Katowice, Poland; (K.K.-T.); (K.K.-V.); (K.W.-S.)
| | - Katarzyna Winsz-Szczotka
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Katowice, Poland; (K.K.-T.); (K.K.-V.); (K.W.-S.)
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Katowice, Poland; (K.K.-T.); (K.K.-V.); (K.W.-S.)
| | - Przemysław Kotyla
- Department of Internal Medicine Rheumatology and Clinical Immunology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-635 Katowice, Poland; (O.G.-S.); (K.K.); (J.K.)
- Department of Rheumatology and Clinical Immunology, Voivodeship Hospital, No. 5, 41-200 Sosnowiec, Poland
| |
Collapse
|
2
|
MERCAN R, GÖKTEN DBULUT, KARA SP, ÜZÜM NMELİK, GÜZEL S. Can mac-2 binding protein glycosylation isomer serve as a biomarker for predicting pulmonary arterial pressure and pulmonary hypertension in systemic sclerosis? Turk J Med Sci 2025; 55:404-412. [PMID: 40342320 PMCID: PMC12058007 DOI: 10.55730/1300-0144.5984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/17/2025] [Accepted: 02/18/2025] [Indexed: 05/11/2025] Open
Abstract
Background/aim This study aimed to explore the role of Mac-2 binding protein glycosylation isomer (M2BPGi) serum levels as a biomarker that could contribute to understanding organ involvement and the overall disease process in systemic sclerosis (SSc). Materials and methods The cross-sectional study examined 108 patients with SSc. Seventy-two people were included in the control group. Demographic and clinical characteristics of the patients, laboratory and radiological findings, pulmonary function tests and echocardiography results, and presence of pulmonary hypertension (PHT) based on echocardiographic evaluation were recorded. Venous blood samples of 5 mL were collected from individuals. Human M2BPGi levels in the samples were measured using a specific kit. Results There was no significant difference between the M2BPGi levels in the patient (median = 4749.69 pg/mL, mean = 5351.75 ± 2483.97) and the control group (median = 4638.07, mean = 4611.86 ± 1333.15) (p = 0.071). Considering pulmonary arterial pressure (PAP) status, the average M2BPGi level in the normal PAP group was 5898.15 ± 2555.61 pg/mL, while it was 4258.96 ± 1973.08 pg/mL in the increased PAP group. The difference between these groups was statistically significant (p: 0.021). Examining PHT status, the average M2BPGi level was 5942.01 ± 2579.14 pg/mL in the group without PHT, decreasing to 4264.44 ± 1917.63 pg/mL in the group with PHT. There is a significant relationship regarding PHT (p: 0.016). Conclusion This study explores the relationship between M2BPGi and systemic involvements in SSc. It demonstrates a significant relationship between M2BPGi and PAP and PHT, suggesting that M2BPGi might serve as a noninvasive biomarker for predicting both PAP and PHT.
Collapse
Affiliation(s)
- Rıdvan MERCAN
- Department of Rheumatology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ,
Turkiye
| | - Dilara BULUT GÖKTEN
- Department of Rheumatology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ,
Turkiye
| | - Sonat Pınar KARA
- Department of Internal Medicine, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ,
Turkiye
| | - Neslihan MELİK ÜZÜM
- Department of Biochemistry, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ,
Turkiye
| | - Savaş GÜZEL
- Department of Biochemistry, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ,
Turkiye
| |
Collapse
|
3
|
Barile R, Rotondo C, Rella V, Trotta A, Cantatore FP, Corrado A. Fibrosis mechanisms in systemic sclerosis and new potential therapies. Postgrad Med J 2024:qgae169. [PMID: 39656890 DOI: 10.1093/postmj/qgae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/20/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Systemic sclerosis is a rare rheumatic disease characterized by immune cell activation, tissue fibrosis, and endothelial dysfunction. Extracellular matrix synthesis disorder causes widespread fibrosis, primarily in skin and internal organs. Various factors such as TGFβ, VEGF, Galectin-3, and signaling pathways like Wnt/β-catenin are involved in pathophysiological processes. Treatment lacks a unified approach but combines diverse modalities tailored to disease subtype and progression. Current therapeutic strategies include biologics, JAK inhibitors, and IL-6 pathway modulators. Monoclonal antibodies and hypomethylating agents demonstrate potential in fibrosis inhibition. This review focuses on emerging therapeutic evidence regarding drugs targeting collagen, cytokines, and cell surface molecules in systemic sclerosis, aiming to provide insight into potential innovative treatment strategies.
Collapse
Affiliation(s)
- Raffaele Barile
- Rheumatology Unit, Department of Medical and Surgical Sciences, University of Foggia, Luigi Pinto 1, 71121, Foggia, Italy
| | - Cinzia Rotondo
- Rheumatology Unit, Department of Medical and Surgical Sciences, University of Foggia, Luigi Pinto 1, 71121, Foggia, Italy
| | - Valeria Rella
- Rheumatology Unit, Department of Medical and Surgical Sciences, University of Foggia, Luigi Pinto 1, 71121, Foggia, Italy
| | - Antonello Trotta
- Rheumatology Unit, Department of Medical and Surgical Sciences, University of Foggia, Luigi Pinto 1, 71121, Foggia, Italy
| | - Francesco Paolo Cantatore
- Rheumatology Unit, Department of Medical and Surgical Sciences, University of Foggia, Luigi Pinto 1, 71121, Foggia, Italy
| | - Addolorata Corrado
- Rheumatology Unit, Department of Medical and Surgical Sciences, University of Foggia, Luigi Pinto 1, 71121, Foggia, Italy
| |
Collapse
|
4
|
Bazsó A, Szodoray P, Shoenfeld Y, Kiss E. Biomarkers reflecting the pathogenesis, clinical manifestations, and guide therapeutic approach in systemic sclerosis: a narrative review. Clin Rheumatol 2024; 43:3055-3072. [PMID: 39210206 PMCID: PMC11442557 DOI: 10.1007/s10067-024-07123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Systemic sclerosis (SSc) is a progressive autoimmune disorder that mainly affects the skin. There are other clinical manifestations as renal, pulmonary, cardiovascular, and gastrointestinal tract involvements. Based on the skin involvement there are two subtypes of SSc, as limited cutaneous SSc (lSSc) which involves the acral part of the body and diffuse cutaneous SSc (dSSc) resulting in significant skin thickening of the body. Despite of the extensive research the pathomechanism is not fully clarified, how Ssc develops, moreover identifying biomarkers to predict the clinical outcome and prognosis still remains challenging. Circulating biomarkers can be crucial to define the diagnosis, to predict the prognosis and monitor the clinical course. However, only some patients are responsive to the therapy in SSc, and there is a need to reach the ideal therapy for any individual to prevent or slow down the progression in early stages of the disease. In this narrative review, our purpose was to summarize the potential biomarkers in Ssc, describe their role in the diagnosis, pathomechanism, clinical course, organ manifestations, as well as the response to the therapy. Biomarkers assessment aids in the evaluation of disease progression, and disease outcome.
Collapse
Affiliation(s)
- Anna Bazsó
- Department of Clinical Immunology, Adult and Paediatric Rheumatology, National Institute of Locomotor System Disorders and Disabilities, Budapest, Hungary.
| | - Péter Szodoray
- Department of Immunology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Yehuda Shoenfeld
- Reichmann University, Herzelia, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, 5265601, Tel-Hashomer, Israel
| | - Emese Kiss
- Department of Clinical Immunology, Adult and Paediatric Rheumatology, National Institute of Locomotor System Disorders and Disabilities, Budapest, Hungary
- Division of Locomotor System and Rheumatology Prevention, Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Sharma JR, Dubey A, Yadav UCS. Cigarette smoke-induced galectin-3 as a diagnostic biomarker and therapeutic target in lung tissue remodeling. Life Sci 2024; 339:122433. [PMID: 38237765 DOI: 10.1016/j.lfs.2024.122433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Galectin-3 (Gal-3), a multifunctional carbohydrate-binding lectin, has emerged as a key player in various biological processes including inflammation, cancer, cardiovascular diseases and fibrotic disorders, however it remains unclear if Gal-3 is a bystander or drives lung tissue remodeling (LTR). Persistent exposure to cigarette smoke (CS) is the leading cause of oxidative and inflammatory damage to the lung tissues. CS-induced pathological increase in Gal-3 expression has been implicated in the pathogenesis of various respiratory conditions, such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer. We and others have reported that CS induces Gal-3 synthesis and secretion, which modulates the pathological signaling pathways in lung epithelial cells implicating Gal-3 as a novel diagnostic marker and a factor driving LTR in CS-exposed lungs. Therefore, pharmacological interventions targeting Gal-3 and its upstream and downstream signaling pathways can help combat CS-induced LTR. Excitingly, preclinical models have demonstrated the efficacy of interventions such as Gal-3 expression inhibition, Gal-3 receptor blockade, and signaling pathways modulation open up promising avenues for future therapeutic interventions. Furthermore, targeting extracellular vesicles-mediated Gal-3 release and the potential of microRNA-based therapy are emerging as novel therapeutic approaches in CS-induced LTR and have been discussed in this article.
Collapse
Affiliation(s)
- Jiten R Sharma
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anupama Dubey
- Special Center for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Umesh C S Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; Special Center for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
6
|
Villanueva-Martin G, Acosta-Herrera M, Carmona EG, Kerick M, Ortego-Centeno N, Callejas-Rubio JL, Mages N, Klages S, Börno S, Timmermann B, Bossini-Castillo L, Martin J. Non-classical circulating monocytes expressing high levels of microsomal prostaglandin E2 synthase-1 tag an aberrant IFN-response in systemic sclerosis. J Autoimmun 2023; 140:103097. [PMID: 37633117 DOI: 10.1016/j.jaut.2023.103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Systemic sclerosis (SSc) is a complex disease that affects the connective tissue, causing fibrosis. SSc patients show altered immune cell composition and activation in the peripheral blood (PB). PB monocytes (Mos) are recruited into tissues where they differentiate into macrophages, which are directly involved in fibrosis. To understand the role of CD14+ PB Mos in SSc, a single-cell transcriptome analysis (scRNA-seq) was conducted on 8 SSc patients and 8 controls. Using unsupervised clustering methods, CD14+ cells were assigned to 11 clusters, which added granularity to the known monocyte subsets: classical (cMos), intermediate (iMos) and non-classical Mos (ncMos) or type 2 dendritic cells. NcMos were significantly overrepresented in SSc patients and showed an active IFN-signature and increased expression levels of PTGES, in addition to monocyte motility and adhesion markers. We identified a SSc-related cluster of IRF7+ STAT1+ iMos with an aberrant IFN-response. Finally, a depletion of M2 polarised cMos in SSc was observed. Our results highlighted the potential of PB Mos as biomarkers for SSc and provided new possibilities for putative drug targets for modulating the innate immune response in SSc.
Collapse
Affiliation(s)
- Gonzalo Villanueva-Martin
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Marialbert Acosta-Herrera
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain; Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| | - Elio G Carmona
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain; Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| | - Martin Kerick
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Norberto Ortego-Centeno
- Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain; Department of Medicine, University of Granada, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| | - Jose Luis Callejas-Rubio
- Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| | - Norbert Mages
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Sven Klages
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Stefan Börno
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Lara Bossini-Castillo
- Department of Genetics and Biotechnology Institute, Biomedical Research Centre (CIBM), University of Granada, 18100, Granada, Spain; Advanced Therapies and Biomedical Technologies (TEC-14), Biosanitary Research Institute Ibs. GRANADA, 18016, Granada, Spain.
| | - Javier Martin
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.
| |
Collapse
|
7
|
Mohtasham Kia Y, Cannavo A, Bahiraie P, Alilou S, Saeedian B, Babajani N, Ghondaghsaz E, Khalaji A, Behnoush AH. Insights into the Role of Galectin-3 as a Diagnostic and Prognostic Biomarker of Atrial Fibrillation. DISEASE MARKERS 2023; 2023:2097012. [PMID: 37849915 PMCID: PMC10578984 DOI: 10.1155/2023/2097012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/02/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Atrial fibrillation (AF) is an irregular atrial activity and the most prevalent type of arrhythmia. Although AF is easily diagnosed with an electrocardiogram, there is a keen interest in identifying an easy-to-dose biomarker that can predict the prognosis of AF and its recurrence. Galectin-3 (Gal-3) is a beta-galactoside binding protein from the lectin family with pro-fibrotic and -inflammatory effects and a pivotal role in a variety of biological processes, cell proliferation, and differentiation; therefore, it is implicated in the pathogenesis of many cardiovascular (e.g., heart failure (HF)) and noncardiovascular diseases. However, its specificity and sensitivity as a potential marker in AF patients remain debated and controversial. This article comprehensively reviewed the evidence regarding the interplay between Gal-3 and patients with AF. Clinical implications of measuring Gal-3 in AF patients for diagnosis and prognosis are mentioned. Moreover, the role of Gal-3 as a potential biomarker for the management of AF recurrence is investigated. The association of Gal-3 and AF in special populations (coronary artery disease, HF, metabolic syndrome, chronic kidney disease, and diabetes mellitus) has been explored in this review. Overall, although further studies are needed to enlighten the role of Gal-3 in the diagnosis and treatment of AF, our study demonstrated the high potential of this molecule to be used and focused on by researchers and clinicians.
Collapse
Affiliation(s)
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Pegah Bahiraie
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanam Alilou
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behrad Saeedian
- School of Medicine, Tehran University of Medical Sciences, Poursina St., Keshavarz Blvd., Tehran 1417613151, Iran
| | - Nastaran Babajani
- School of Medicine, Tehran University of Medical Sciences, Poursina St., Keshavarz Blvd., Tehran 1417613151, Iran
| | - Elina Ghondaghsaz
- Undergraduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Amirmohammad Khalaji
- School of Medicine, Tehran University of Medical Sciences, Poursina St., Keshavarz Blvd., Tehran 1417613151, Iran
| | - Amir Hossein Behnoush
- School of Medicine, Tehran University of Medical Sciences, Poursina St., Keshavarz Blvd., Tehran 1417613151, Iran
| |
Collapse
|
8
|
Ortega-Ferreira C, Soret P, Robin G, Speca S, Hubert S, Le Gall M, Desvaux E, Jendoubi M, Saint-Paul J, Chadli L, Chomel A, Berger S, Nony E, Neau B, Fould B, Licznar A, Levasseur F, Guerrier T, Elouej S, Courtade-Gaïani S, Provost N, Nguyen TQ, Verdier J, Launay D, De Ceuninck F. Antibody-mediated neutralization of galectin-3 as a strategy for the treatment of systemic sclerosis. Nat Commun 2023; 14:5291. [PMID: 37652913 PMCID: PMC10471779 DOI: 10.1038/s41467-023-41117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune, inflammatory and fibrotic disease with limited treatment options. Developing new therapies is therefore crucial to address patient needs. To this end, we focused on galectin-3 (Gal-3), a lectin known to be associated with several pathological processes seen in SSc. Using RNA sequencing of whole-blood samples in a cross-sectional cohort of 249 patients with SSc, Gal-3 and its interactants defined a strong transcriptomic fingerprint associated with disease severity, pulmonary and cardiac malfunctions, neutrophilia and lymphopenia. We developed new Gal-3 neutralizing monoclonal antibodies (mAb), which were then evaluated in a mouse model of hypochlorous acid (HOCl)-induced SSc. We show that two of these antibodies, D11 and E07, reduced pathological skin thickening, lung and skin collagen deposition, pulmonary macrophage content, and plasma interleukin-5 and -6 levels. Moreover, E07 changed the transcriptional profiles of HOCl-treated mice, resulting in a gene expression pattern that resembled that of control mice. Similarly, pathological pathways engaged in patients with SSc were counteracted by E07 in mice. Collectively, these findings demonstrate the translational potential of Gal-3 blockade as a therapeutic option for SSc.
Collapse
Affiliation(s)
- Céline Ortega-Ferreira
- Servier R&D Center, Biomarker Assay Development, Translational Medicine, Gif-sur-Yvette, France
| | - Perrine Soret
- Servier R&D Center, Biomarker Biostatistics, Gif-sur-Yvette, France
| | | | - Silvia Speca
- U1286 INFINITE, Institute for Translational Research in Inflammation, Lille University, Gif-sur-Yvette, France
- Inserm, Lille, France
| | - Sandra Hubert
- Servier R&D Center, Neurosciences and Immuno-inflammation Therapeutic Area, Gif-sur-Yvette, France
| | | | - Emiko Desvaux
- Servier R&D Center, Neurosciences and Immuno-inflammation Therapeutic Area, Gif-sur-Yvette, France
| | - Manel Jendoubi
- U1286 INFINITE, Institute for Translational Research in Inflammation, Lille University, Gif-sur-Yvette, France
- Inserm, Lille, France
| | | | - Loubna Chadli
- Servier R&D Center, Clinical Biomarker Development, Translational Medicine, Gif-sur-Yvette, France
| | - Agnès Chomel
- Servier R&D Center, Protein Sciences, Gif-sur-Yvette, France
| | - Sylvie Berger
- Servier R&D Center, Structural Sciences, Gif-sur-Yvette, France
| | - Emmanuel Nony
- Servier R&D Center, Protein Sciences, Gif-sur-Yvette, France
| | - Béatrice Neau
- Servier R&D Center, Preclinical Biostatistics, Quantitative Pharmacology, Gif-sur-Yvette, France
| | - Benjamin Fould
- Servier R&D Center, Protein Sciences, Gif-sur-Yvette, France
| | - Anne Licznar
- Servier R&D Center, DMPK Department, Translational Medicine, Gif-sur-Yvette, France
| | - Franck Levasseur
- Servier R&D Center, DMPK Department, Translational Medicine, Gif-sur-Yvette, France
| | - Thomas Guerrier
- U1286 INFINITE, Institute for Translational Research in Inflammation, Lille University, Gif-sur-Yvette, France
- Inserm, Lille, France
| | - Sahar Elouej
- Servier R&D Center, Computational Medicine, Gif-sur-Yvette, France
| | | | - Nicolas Provost
- Servier R&D Center, Molecular Genomics, Gif-sur-Yvette, France
| | | | - Julien Verdier
- Servier R&D Center, Neurosciences and Immuno-inflammation Therapeutic Area, Gif-sur-Yvette, France
| | - David Launay
- U1286 INFINITE, Institute for Translational Research in Inflammation, Lille University, Gif-sur-Yvette, France
- Inserm, Lille, France
- Lille University Hospital, Department of Internal Medicine and Clinical Immunology, Reference Center for Rare Systemic Autoimmune Diseases, North and North-West France (CeRAINO), Lille, France
| | - Frédéric De Ceuninck
- Servier R&D Center, Neurosciences and Immuno-inflammation Therapeutic Area, Gif-sur-Yvette, France.
| |
Collapse
|
9
|
Fioretto BS, Rosa I, Matucci-Cerinic M, Romano E, Manetti M. Current Trends in Vascular Biomarkers for Systemic Sclerosis: A Narrative Review. Int J Mol Sci 2023; 24:ijms24044097. [PMID: 36835506 PMCID: PMC9965592 DOI: 10.3390/ijms24044097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Systemic sclerosis (SSc, scleroderma) is a multifaceted rare connective tissue disease whose pathogenesis is dominated by immune dysregulation, small vessel vasculopathy, impaired angiogenesis, and both cutaneous and visceral fibrosis. Microvascular impairment represents the initial event of the disease, preceding fibrosis by months or years and accounting for the main disabling and/or life-threatening clinical manifestations, including telangiectasias, pitting scars, periungual microvascular abnormalities (e.g., giant capillaries, hemorrhages, avascular areas, ramified/bushy capillaries) clinically detectable by nailfold videocapillaroscopy, ischemic digital ulcers, pulmonary arterial hypertension, and scleroderma renal crisis. Despite a variety of available treatment options, treatment of SSc-related vascular disease remains problematic, even considering SSc etherogenity and the quite narrow therapeutic window. In this context, plenty of studies have highlighted the great usefulness in clinical practice of vascular biomarkers allowing clinicians to assess the evolution of the pathological process affecting the vessels, as well as to predict the prognosis and the response to therapy. The current narrative review provides an up-to-date overview of the main candidate vascular biomarkers that have been proposed for SSc, focusing on their main reported associations with characteristic clinical vascular features of the disease.
Collapse
Affiliation(s)
- Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Matucci-Cerinic
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Correspondence:
| |
Collapse
|
10
|
Piera-Velazquez S, Dillon ST, Gu X, Libermann TA, Jimenez SA. Aptamer proteomics of serum exosomes from patients with Primary Raynaud's and patients with Raynaud's at risk of evolving into Systemic Sclerosis. PLoS One 2022; 17:e0279461. [PMID: 36548367 PMCID: PMC9779033 DOI: 10.1371/journal.pone.0279461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A major unmet need for Systemic Sclerosis (SSc) clinical management is the lack of biomarkers for the early diagnosis of patients with Raynaud's Phenomenon at high risk of evolving into SSc. OBJECTIVE To identify proteins contained within serum exosomes employing an aptamer proteomic analysis that may serve to reveal patients with Raynaud's Phenomenon at risk of developing SSc. METHODS Exosomes were isolated from serum samples from patients with Primary Raynaud's Phenomenon and from patients with Raynaud's Phenomenon harbouring serum antinuclear antibodies (ANA) who may be at high risk of evolving into SSc. The expression of 1,305 proteins was quantified using SOMAscan aptamer proteomics, and associations of the differentially elevated or reduced proteins with the clinical subsets of Raynaud's Phenomenon were assessed. RESULTS Twenty one differentially elevated and one differentially reduced (absolute fold change >|1.3|) proteins were identified. Principal component analysis using these 22 most differentially expressed proteins resulted in excellent separation of the two Raynaud's Phenomenon clinical subsets. Remarkably, the most differentially elevated proteins are involved in enhanced inflammatory responses, immune cell activation and cell migration, and abnormal vascular functions. CONCLUSION Aptamer proteomic analysis of circulating exosomes identified differentially elevated or reduced proteins between Raynaud's Phenomenon at high risk of evolving into SSc and Primary Raynaud's Phenomenon patients. Some of these proteins are involved in relevant biological pathways that may play a role in SSc pathogenesis including enhanced inflammatory responses, immune cell activation, and endothelial cell and vascular abnormalities.
Collapse
Affiliation(s)
- Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine, Scleroderma Center of Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Simon T. Dillon
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xuesong Gu
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Towia A. Libermann
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SAJ); (TAL)
| | - Sergio A. Jimenez
- Jefferson Institute of Molecular Medicine, Scleroderma Center of Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (SAJ); (TAL)
| |
Collapse
|
11
|
Increased Expression of Galectin-3 in Skin Fibrosis: Evidence from In Vitro and In Vivo Studies. Int J Mol Sci 2022; 23:ijms232315319. [PMID: 36499646 PMCID: PMC9737805 DOI: 10.3390/ijms232315319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Skin fibrosis is a hallmark of a wide array of dermatological diseases which can greatly impact the patients' quality of life. Galectin-3 (GAL-3) has emerged as a central regulator of tissue fibrosis, playing an important pro-fibrotic role in numerous organs. Various studies are highlighting its importance as a skin fibrotic diseases biomarker; however, there is a need for further studies that clarify its role. This paper aims to ascertain whether the expression of GAL-3 is increased in relevant in vitro and in vivo models of skin fibrosis. We studied the role of GAL-3 in vitro using normal human dermal fibroblasts (NHDF) and fibrocytes. In addition, we used a skin fibrosis murine model (BALB/c mice) and human biopsies of healthy or keloid tissue. GAL-3 expression was analyzed using real time PCR, Western blot and immunostaining techniques. We report a significantly increased expression of GAL-3 in NHDF and fibrocytes cell cultures following stimulation with transforming growth factor β1 (TGFβ1). In vivo, GAL-3 expression was increased in a murine model of systemic sclerosis and in human keloid biopsies. In sum, this study underlines the involvement of GAL-3 in skin fibrosis using several models of the disease and highlights its role as a relevant target.
Collapse
|
12
|
Cannavo A, Liccardo D, Gelzo M, Amato F, Gentile I, Pinchera B, Femminella GD, Parrella R, DE Rosa A, Gambino G, Marzano F, Ferrara N, Paolocci N, Rengo G, Castaldo G. Serum Galectin-3 and Aldosterone: potential biomarkers of cardiac complications in patients with COVID-19. Minerva Endocrinol (Torino) 2022; 47:270-278. [PMID: 35266671 DOI: 10.23736/s2724-6507.22.03789-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Despite severe acute respiratory syndrome (SARS)-Coronavirus (CoV2) primarily targeting the lungs, the heart represents another critical virus target. Thus, the identification of SARS-CoV-2 disease of 2019 (COVID-19)-associated biomarkers would be beneficial to stratify prognosis and the risk of developing cardiac complications. Aldosterone and galectin-3 promote fibrosis and inflammation and are considered a prognostic biomarker of lung and adverse cardiac remodeling. Here, we tested whether galectin-3 and aldosterone levels can predict adverse cardiac outcomes in COVID-19 patients. METHODS To this aim, we assessed galectin-3 and aldosterone serum levels in 51 patients diagnosed with COVID-19, using a population of 19 healthy subjects as controls. In in vitro studies, we employed 3T3 fibroblasts to assess the potential roles of aldosterone and galectin-3 in fibroblast activation. RESULTS Serum galectin-3 levels were more elevated in COVID-19 patients than healthy controls and correlated with COVID-19 severity classification and cardiac Troponin-I (cTnI) serum levels. Furthermore, we observed an augmented secretion of aldosterone in COVID-19 patients. This adrenal hormone is a direct stimulator of galectin-3 secretion; therefore, we surmised that this axis could perpetrate fibrosis and adverse remodeling in these subjects. Thus, we stimulated fibroblasts with 10% of serum from COVID-19 patients. This challenge markedly rose the expression of smooth muscle alpha (α)-2 actin (ACTA2), a myofibroblast marker. CONCLUSIONS Our study suggests that COVID-19 can affect cardiac structure and function by triggering aldosterone and galectin-3 release that may serve as prognostic and therapeutic biomarkers while monitoring the course of cardiac complications in patients suffering from COVID-19.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Daniela Liccardo
- Center for Translational Medicine, Temple University, Philadelphia, PA, USA
| | - Monica Gelzo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate S.c.a.r.l., Naples, Italy
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate S.c.a.r.l., Naples, Italy
| | - Ivan Gentile
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Biagio Pinchera
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Grazia D Femminella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Roberto Parrella
- Respiratory Infectious Diseases Unit, Cotugno Hospital- A.O.R.N. Dei Colli, Naples, Italy
| | - Annunziata DE Rosa
- Respiratory Infectious Diseases Unit, Cotugno Hospital- A.O.R.N. Dei Colli, Naples, Italy
| | - Giuseppina Gambino
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Federica Marzano
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Istituti Clinici Scientifici ICS Maugeri -S.p.A. - Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Scientifico di Telese Terme, Telese Terme, Benevento, Italy
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University Medical Institutions, Baltimore, MD, USA.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy - .,Istituti Clinici Scientifici ICS Maugeri -S.p.A. - Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Scientifico di Telese Terme, Telese Terme, Benevento, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate S.c.a.r.l., Naples, Italy
| |
Collapse
|
13
|
Galectin-3 as a Novel Multifaceted and Not Only Cardiovascular Biomarker in Patients with Psoriasis with Regard to Systemic Treatment-Preliminary Data. BIOLOGY 2022; 11:biology11010088. [PMID: 35053087 PMCID: PMC8773359 DOI: 10.3390/biology11010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/30/2022]
Abstract
Simple Summary Galectin-3 (gal-3) regulates many different biological processes and diseases, which are common accompanying diseases of psoriasis. Psoriasis is one of the most common skin diseases. There is little information about potential diagnostic role of gal-3 in psoriasis. Serum gal-3 concentrations were measured before and after twelve weeks of antipsoriatic treatment in patients with psoriasis and compared to 11 persons without psoriasis (control group). Serum gal-3 level in patients with psoriasis was significantly higher compared to the control group. In obese patients and long-lasting psoriasis positive relations of gal-3 and index of psoriasis severity were noted. In psoriatics with low gal-3 levels, it was noted that the higher the gal-3, the higher the BMI and glucose level. In patients with long history of psoriasis it was observed that the higher gal-3, the lower the lipids levels. The Gal-3 level might be a factor affecting the course of psoriasis and useful in prediction of cardiometabolic comorbidities, especially in patients with a long history of the disease or obesity. Patients with low serum gal-3 and a short history of psoriasis may have greater risk of diabetes. In obese patients with long-lasting psoriasis, gal-3 may have a beneficial influence against abnormal lipid profiles or perhaps further cardiovascular disorder development. Abstract Galectin-3 (gal-3) is a multifunctional regulator of various biological processes and diseases, which are common comorbidities in psoriasis. Data regarding potential diagnostic role of gal-3 in psoriasis are insufficient. Serum gal-3 levels were evaluated before and after twelve weeks of treatment with acitretin or methotrexate in 31 patients with plaque-type psoriasis and compared to 11 healthy control group. The mean serum galectin-3 level in patients with psoriasis was significantly higher compared to the control group (p < 0.01). In patients with obesity and long-lasting psoriasis (>20 years) positive relations of gal-3 and PASI were noted. In psoriatics with low gal-3 levels, positive correlations between the gal-3 and BMI, glucose level, and with the latter in short-lasting psoriasis (<20 years) were noted. In the long history of psoriasis, gal-3 was negatively correlated with lipids levels. The Gal-3 level might be a multifaceted modulator of the course of psoriasis and predictive factor of cardiometabolic comorbidities’ development, especially in patients with a long history of the disease or obesity. Patients with low serum gal-3 and short history of psoriasis are presumably at greater risk of diabetes. In patients with long-lasting psoriasis and concomitant obesity, gal-3 may exert a protective role against dyslipidemia or perhaps further CMD development.
Collapse
|
14
|
Hromadka M, Baxa J, Seidlerova J, Miklik R, Rajdl D, Sudova V, Suchy D, Rokyta R. Myocardial Involvement Detected Using Cardiac Magnetic Resonance Imaging in Patients with Systemic Sclerosis: A Prospective Observational Study. J Clin Med 2021; 10:jcm10225364. [PMID: 34830647 PMCID: PMC8620356 DOI: 10.3390/jcm10225364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction and objectives: Cardiac involvement in systemic sclerosis (SSc) patients affects mortality. Cardiac magnetic resonance (CMR) is capable of detecting structural changes, including diffuse myocardial fibrosis that may develop over time. Our aim was to evaluate myocardial structure and function changes using CMR in patients with SSc without known cardiac disease during a 5-year follow-up and find possible correlations with selected biomarkers. Methods: A total of 25 patients underwent baseline and follow-up CMR examinations according to a pre-specified protocol. Standard biochemistry, five biomarkers (hsTnI, NT-proBNP, galectin-3, sST2, and GDF-15), and disease-specific functional parameters enabling the classification of disease severity were also measured. Results: After five years, no patient suffered from manifest heart disease. Mean extracellular volume (ECV) and T1 mapping values did not change significantly (p ≥ 0.073). However, individual increases in native T1 time and ECV correlated with increased galectin-3 serum levels (r = 0.56; p = 0.0050, and r = 0.71; p = 0.0001, respectively). The progression of skin involvement assessed using the Rodnan skin score and a decrease in the diffusing capacity of the lungs were associated with increased GDF-15 values (r = 0.63; p = 0.0009, and r = −0.51; p = 0.011, respectively). Conclusions: During the 5-year follow-up, there was no new onset of heart disease observed in patients with SSc. However, in some patients, CMR detected progression of sub-clinical myocardial fibrosis that significantly correlated with elevated galectin-3 levels. GDF-15 values were found to be associated with disease severity progression.
Collapse
Affiliation(s)
- Milan Hromadka
- Department of Cardiology, University Hospital and Faculty of Medicine in Pilsen and Faculty Hospital, Charles University, Alej Svobody 80, 304 60 Pilsen, Czech Republic; (M.H.); (R.R.)
| | - Jan Baxa
- Department of Imaging Methods, University Hospital and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 304 60 Pilsen, Czech Republic;
| | - Jitka Seidlerova
- Internal Department II, University Hospital and Faculty of Medicine in Pilsen, Charles University, Edvarda Benese 1128/13, 305 99 Pilsen, Czech Republic;
| | - Roman Miklik
- Department of Cardiology, University Hospital and Faculty of Medicine in Pilsen and Faculty Hospital, Charles University, Alej Svobody 80, 304 60 Pilsen, Czech Republic; (M.H.); (R.R.)
- Correspondence:
| | - Dan Rajdl
- Department of Clinical Biochemistry and Hematology, University Hospital and Faculty of Medicine in Pilsen, Alej Svobody 80, 304 60 Pilsen, Czech Republic; (D.R.); (V.S.)
| | - Vendula Sudova
- Department of Clinical Biochemistry and Hematology, University Hospital and Faculty of Medicine in Pilsen, Alej Svobody 80, 304 60 Pilsen, Czech Republic; (D.R.); (V.S.)
| | - David Suchy
- Department of Clinical Pharmacology, Rheumatology, University Hospital and Faculty of Medicine in Pilsen, Charles University, Edvarda Benese 1128/13, 305 99 Pilsen, Czech Republic;
| | - Richard Rokyta
- Department of Cardiology, University Hospital and Faculty of Medicine in Pilsen and Faculty Hospital, Charles University, Alej Svobody 80, 304 60 Pilsen, Czech Republic; (M.H.); (R.R.)
| |
Collapse
|