1
|
Joković N, Pešić S, Vitorović J, Bogdanović A, Sharifi-Rad J, Calina D. Glucosinolates and Their Hydrolytic Derivatives: Promising Phytochemicals With Anticancer Potential. Phytother Res 2025; 39:1035-1089. [PMID: 39726346 DOI: 10.1002/ptr.8419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/29/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Recent research has increasingly focused on phytochemicals as promising anticancer agents, with glucosinolates (GSLs) and their hydrolytic derivatives playing a central role. These sulfur-containing compounds, found in plants of the Brassicales order, are converted by myrosinase enzymes into biologically active products, primarily isothiocyanates (ITCs) and indoles, which exhibit significant anticancer properties. Indole-3-carbinol, diindolylmethane, sulforaphane (SFN), phenethyl isothiocyanate (PEITC), benzyl isothiocyanate, and allyl isothiocyanate have shown potent anticancer effects in animal models, particularly in breast, prostate, lung, melanoma, bladder, hepatoma, and gastrointestinal cancers. Clinical studies further support the chemopreventive effects of SFN and PEITC, particularly in detoxifying carcinogens and altering biochemical markers in cancer patients. These compounds have demonstrated good bioavailability, low toxicity, and minimal adverse effects, supporting their potential therapeutic application. Their anticancer mechanisms include the modulation of reactive oxygen species, suppression of cancer-related signaling pathways, and direct interaction with tumor cell proteins. Additionally, semi-synthetic derivatives of GSLs have been developed to enhance anticancer efficacy. In conclusion, GSLs and their derivatives offer significant potential as both chemopreventive and therapeutic agents, warranting further clinical investigation to optimize their application in cancer treatment.
Collapse
Affiliation(s)
- Nataša Joković
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Strahinja Pešić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Jelena Vitorović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Andrija Bogdanović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
2
|
Huang L, Li HJ, Wu YC. Processing technologies, phytochemistry, bioactivities and applications of black ginseng-a novel manufactured ginseng product: A comprehensive review. Food Chem 2023; 407:134714. [PMID: 36495746 DOI: 10.1016/j.foodchem.2022.134714] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022]
Abstract
Black ginseng is a novel manufactured ginseng product, and the application of black ginseng products in market is increasing in recent years. Black ginseng is prepared by steaming and fermentation, but not as mature as processing red ginseng. Therefore, complete proposals for preparation techniques are firstly presented. Additionally, there are also abundant chemical components in black ginseng, including ginsenosides, polysaccharides, amino acids, polyphenols, flavonoids, etc. Among them, ginsenosides, polysaccharides and phenolic compounds are the main ingredients, making health benefits of black ginseng stronger than other ginseng products. Therefore, black ginseng as a functional food has come to the market in various forms, such as candies, tea, porridge, soup, etc. The improvement in nutrition, flavor, and safety has exhibited a broad prospect for black ginseng products in food industry. Accordingly, preparation technologies, phytochemistry, health benefits and application of black ginseng are comprehensively evaluated.
Collapse
Affiliation(s)
- Li Huang
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China
| | - Yan-Chao Wu
- Weihai Jinyiyang Pharmaceutical Co., Ltd, Wendeng District, Weihai 264400, PR China.
| |
Collapse
|
3
|
Curcumin Targeting Non-Coding RNAs in Colorectal Cancer: Therapeutic and Biomarker Implications. Biomolecules 2022; 12:biom12101339. [PMID: 36291546 PMCID: PMC9599102 DOI: 10.3390/biom12101339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is one of the most common gastrointestinal malignancies, with high incidence rates, a low rate of early diagnosis, and complex pathogenesis. In recent years, there has been progress made in its diagnosis and treatment methods, but tumor malignant proliferation and metastasis after treatment still seriously affect the survival and prognosis of patients. Therefore, it is an extremely urgent task of current medicine to find new anti-tumor drugs with high efficiency and safety and low toxicity. Curcumin has shown potent anti-tumor and anti-inflammatory effects and is considered a hot spot in the research and development of anti-tumor drugs due to its advantages of precise efficacy, lower toxic side effects, and less drug resistance. Recent studies have revealed that curcumin has anti-tumor effects exerted on the epigenetic regulation of tumor-promoting/tumor-suppressing gene expression through the alteration of expression levels of non-coding RNAs (e.g., lncRNAs, miRNAs, and circRNAs). Herein, we summarize the interaction between curcumin and non-coding RNAs on the occurrence and development of colorectal cancer. The information complied in this review will serve as a scientific and reliable basis and viewpoint for the clinical application of non-coding RNAs in colorectal cancer.
Collapse
|
4
|
Giordo R, Wehbe Z, Posadino AM, Erre GL, Eid AH, Mangoni AA, Pintus G. Disease-Associated Regulation of Non-Coding RNAs by Resveratrol: Molecular Insights and Therapeutic Applications. Front Cell Dev Biol 2022; 10:894305. [PMID: 35912113 PMCID: PMC9326031 DOI: 10.3389/fcell.2022.894305] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
There have been significant advances, particularly over the last 20 years, in the identification of non-coding RNAs (ncRNAs) and their pathophysiological role in a wide range of disease states, particularly cancer and other chronic conditions characterized by excess inflammation and oxidative stress such as atherosclerosis, diabetes, obesity, multiple sclerosis, osteoporosis, liver and lung fibrosis. Such discoveries have potential therapeutic implications as a better understanding of the molecular mechanisms underpinning the effects of ncRNAs on critical homeostatic control mechanisms and biochemical pathways might lead to the identification of novel druggable targets. In this context, increasing evidence suggests that several natural compounds can target ncRNAs at different levels and, consequently, influence processes involved in the onset and progression of disease states. The natural phenol resveratrol has been extensively studied for therapeutic purposes in view of its established anti-inflammatory and antioxidant effects, particularly in disease states such as cancer and cardiovascular disease that are associated with human aging. However, increasing in vitro and in vivo evidence also suggests that resveratrol can directly target various ncRNAs and that this mediates, at least in part, its potential therapeutic effects. This review critically appraises the available evidence regarding the resveratrol-mediated modulation of different ncRNAs in a wide range of disease states characterized by a pro-inflammatory state and oxidative stress, the potential therapeutic applications, and future research directions.
Collapse
Affiliation(s)
- Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Zena Wehbe
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, University of London, London, United Kingdom
| | | | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, Sassari, Italy
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, Q.U. Health. Qatar University, Doha, Qatar
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Adelaide, SA, Australia
- *Correspondence: Arduino A. Mangoni, ; Gianfranco Pintus,
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Arduino A. Mangoni, ; Gianfranco Pintus,
| |
Collapse
|
5
|
Mukarram M, Choudhary S, Khan MA, Poltronieri P, Khan MMA, Ali J, Kurjak D, Shahid M. Lemongrass Essential Oil Components with Antimicrobial and Anticancer Activities. Antioxidants (Basel) 2021; 11:20. [PMID: 35052524 PMCID: PMC8773226 DOI: 10.3390/antiox11010020] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
The prominent cultivation of lemongrass (Cymbopogon spp.) relies on the pharmacological incentives of its essential oil. Lemongrass essential oil (LEO) carries a significant amount of numerous bioactive compounds, such as citral (mixture of geranial and neral), isoneral, isogeranial, geraniol, geranyl acetate, citronellal, citronellol, germacrene-D, and elemol, in addition to other bioactive compounds. These components confer various pharmacological actions to LEO, including antifungal, antibacterial, antiviral, anticancer, and antioxidant properties. These LEO attributes are commercially exploited in the pharmaceutical, cosmetics, and food preservations industries. Furthermore, the application of LEO in the treatment of cancer opens a new vista in the field of therapeutics. Although different LEO components have shown promising anticancer activities in vitro, their effects have not yet been assessed in the human system. Hence, further studies on the anticancer mechanisms conferred by LEO components are required. The present review intends to provide a timely discussion on the relevance of LEO in combating cancer and sustaining human healthcare, as well as in food industry applications.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.C.); (M.M.A.K.)
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001 Zvolen, Slovakia;
| | - Sadaf Choudhary
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.C.); (M.M.A.K.)
| | - Mo Ahamad Khan
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India;
| | - Palmiro Poltronieri
- Institute of Sciences of Food Productions, ISPA-CNR, National Research Council of Italy, Via Monteroni km 7, 73100 Lecce, Italy
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.C.); (M.M.A.K.)
| | - Jamin Ali
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Newcastle ST5 5BG, UK;
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001 Zvolen, Slovakia;
| | - Mohd Shahid
- Department of Microbiology, Immunology & Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Road 2904 Building 293 Manama, 329, Bahrain;
| |
Collapse
|