1
|
Mayer FP, Niello M, Bulling S, Zhang YW, Li Y, Kudlacek O, Holy M, Kooti F, Sandtner W, Rudnick G, Schmid D, Sitte HH. Mephedrone induces partial release at human dopamine transporters but full release at human serotonin transporters. Neuropharmacology 2023; 240:109704. [PMID: 37703919 DOI: 10.1016/j.neuropharm.2023.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 07/07/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
Mephedrone (4-methylmethcathinone) is a cathinone derivative that is recreationally consumed for its energizing and empathogenic effects. The stimulating properties are believed to arise from the ability of mephedrone to interact with the high-affinity transporters for dopamine (DA) (DAT) and norepinephrine (NET), whereas the entactogenic effect presumably relies on its activity at the serotonin (5-HT) transporter (SERT). Early studies found that mephedrone acts as a releaser at NET, DAT and SERT, and thus promotes efflux of the respective monoamines. Evidence linked drug-induced reverse transport of 5-HT via SERT to prosocial effects, whereas activity at DAT is strongly correlated with abuse liability. Consequently, we sought to evaluate the pharmacology of mephedrone at human (h) DAT and SERT, heterologously expressed in human embryonic kidney 293 cells, in further detail. In line with previous studies, we report that mephedrone evokes carrier-mediated release via hDAT and hSERT. We found this effect to be sensitive to the protein kinase C inhibitor GF109203X. Electrophysiological recordings revealed that mephedrone is actively transported by hDAT and hSERT. However, mephedrone acts as a full substrate of hSERT but as a partial substrate of hDAT. Furthermore, when compared to fully efficacious releasing agents at hDAT and hSERT (i.e. S(+)-amphetamine and para-chloroamphetamine, respectively) mephedrone displays greater efficacy as a releaser at hSERT than at hDAT. In summary, this study provides additional insights into the molecular mechanism of action of mephedrone at hDAT and hSERT.
Collapse
Affiliation(s)
- Felix P Mayer
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Marco Niello
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Simon Bulling
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Yuan-Wei Zhang
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8066, USA
| | - Yang Li
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Oliver Kudlacek
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Marion Holy
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Fatemeh Kooti
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Walter Sandtner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Gary Rudnick
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8066, USA
| | - Diethart Schmid
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria; Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan; Center for Addiction Research and Science - AddRess, Medical University of Vienna, Waehringer Strasse 13a, A-1090, Vienna, Austria.
| |
Collapse
|
2
|
Brugnoli FR, Holy M, Niello M, Maier J, Hanreich M, Menzel M, Haberler M, Zulus N, Pickl T, Ivanova C, Muiznieks LD, Garlan B, Sitte HH. Development and validation of an automated microfluidic perfusion platform for parallelized screening of compounds in vitro. Basic Clin Pharmacol Toxicol 2023; 133:535-547. [PMID: 37658634 PMCID: PMC10952622 DOI: 10.1111/bcpt.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Monoamine transporters are of great interest for their role in the physiological activity of the body and their link to mental and behavioural disorders. Currently, static well-plate assays or manual perfusion systems are used to characterize the interaction of psychostimulants, antidepressants and drugs of abuse with the transporters but still suffer from significant drawbacks caused by lack of automation, for example, low reproducibility, non-comparability of results. An automated microfluidic platform was developed to address the need for more standardized procedures for cell-based assays. An automated system was used to control and drive the simultaneous perfusion of 12 channels on a microfluidic chip, establishing a more standardized protocol to perform release assays to study monoamine transporter-mediated substrate efflux. D-Amphetamine, GBR12909 (norepinephrine transporter) and p-chloroamphetamine, paroxetine (serotonin transporter) were used as control compounds to validate the system. The platform was able to produce the expected releasing (D-Amphetamine, p-chloroamphetamine) or inhibiting (GBR12909, paroxetine) profiles for the two transporters. The reduction of manual operation and introduction of automated flow control enabled the implementation of stronger standardized protocols and the possibility of obtaining higher throughput by increasing parallelization.
Collapse
Affiliation(s)
- Francesca R. Brugnoli
- Elvesys ‐ Microfluidic Innovation CenterParisFrance
- Center for Physiology and Pharmacology, Institute of PharmacologyMedical University of ViennaViennaAustria
| | - Marion Holy
- Center for Physiology and Pharmacology, Institute of PharmacologyMedical University of ViennaViennaAustria
| | - Marco Niello
- Center for Physiology and Pharmacology, Institute of PharmacologyMedical University of ViennaViennaAustria
| | - Julian Maier
- Center for Physiology and Pharmacology, Institute of PharmacologyMedical University of ViennaViennaAustria
| | - Marcus Hanreich
- Höhere Technische Bundeslehr‐ und Versuchsanstalt Mödling (HTL Mödling)MödlingAustria
| | - Mario Menzel
- Höhere Technische Bundeslehr‐ und Versuchsanstalt Mödling (HTL Mödling)MödlingAustria
| | - Matthias Haberler
- Höhere Technische Bundeslehr‐ und Versuchsanstalt Mödling (HTL Mödling)MödlingAustria
| | - Niklas Zulus
- Höhere Technische Bundeslehr‐ und Versuchsanstalt Mödling (HTL Mödling)MödlingAustria
| | - Thomas Pickl
- Höhere Technische Bundeslehr‐ und Versuchsanstalt Mödling (HTL Mödling)MödlingAustria
| | | | | | | | - Harald H. Sitte
- Center for Physiology and Pharmacology, Institute of PharmacologyMedical University of ViennaViennaAustria
- Hourani Center for Applied Scientific ResearchAl‐Ahliyya Amman UniversityAmmanJordan
- Center for Addiction Research and Science ‐ AddRessMedical University ViennaViennaAustria
| |
Collapse
|
3
|
Che P, Davidson JT, Still K, Kool J, Kohler I. In vitro metabolism of cathinone positional isomers: does sex matter? Anal Bioanal Chem 2023; 415:5403-5420. [PMID: 37452840 PMCID: PMC10444680 DOI: 10.1007/s00216-023-04815-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Synthetic cathinones, one of the most prevalent categories of new psychoactive substances, have been posing a serious threat to public health. Methylmethcathinones (MMCs), notably 3-MMC, have seen an alarming increase in their use in the last decade. The metabolism and toxicology of a large majority of synthetic cathinones, including 3-MMC and 2-MMC, remain unknown. Traditionally, male-derived liver materials have been used as in vitro metabolic incubations to investigate the metabolism of xenobiotics, including MMCs. Therefore, little is known about the metabolism in female-derived in vitro models and the potential sex-specific differences in biotransformation. In this study, the metabolism of 2-MMC, 3-MMC, and 4-MMC was investigated using female rat and human liver microsomal incubations, as well as male rat and human liver microsomal incubations. A total of 25 phase I metabolites of MMCs were detected and tentatively identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Seven sex-specific metabolites were detected exclusively using pooled male rat liver microsomal incubations. In addition, the metabolites generated from the sex-dependent in vitro metabolic incubations that were present in both male and female rat liver microsomal incubations showed differences in relative abundance. Yet, neither sex-specific metabolites nor significant differences in relative abundance were observed from pooled human liver microsomal incubations. This is the first study to report the phase I metabolic pathways of MMCs using in vitro metabolic incubations for both male and female liver microsomes, and the relative abundance of the metabolites observed from each sex.
Collapse
Affiliation(s)
- Peng Che
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Center for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - J Tyler Davidson
- Department of Forensic Science, Sam Houston State University, Huntsville, TX, USA
| | - Kristina Still
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Center for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Jeroen Kool
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Center for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Isabelle Kohler
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
- Center for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands.
- Co van Ledden Hulsebosch Center (CLHC), Amsterdam Center for Forensic Science and Medicine, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Niello M, Sideromenos S, Gradisch R, O´Shea R, Schwazer J, Maier J, Kastner N, Sandtner W, Jäntsch K, Lupica CR, Hoffman AF, Lubec G, Loland CJ, Stockner T, Pollak DD, Baumann MH, Sitte HH. Persistent binding at dopamine transporters determines sustained psychostimulant effects. Proc Natl Acad Sci U S A 2023; 120:e2114204120. [PMID: 36730201 PMCID: PMC9963675 DOI: 10.1073/pnas.2114204120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/28/2022] [Indexed: 02/03/2023] Open
Abstract
Psychostimulants interacting with the dopamine transporter (DAT) can be used illicitly or for the treatment of specific neuropsychiatric disorders. However, they can also produce severe and persistent adverse events. Often, their pharmacological properties in vitro do not fully correlate to their pharmacological profile in vivo. Here, we investigated the pharmacological effects of enantiomers of pyrovalerone, α-pyrrolidinovalerophenone, and 3,4-methylenedioxypyrovalerone as compared to the traditional psychostimulants cocaine and methylphenidate, using a variety of in vitro, computational, and in vivo approaches. We found that in vitro drug-binding kinetics at DAT correlate with the time-course of in vivo psychostimulant action in mice. In particular, a slow dissociation (i.e., slow koff) of S-enantiomers of pyrovalerone analogs from DAT predicts their more persistent in vivo effects when compared to cocaine and methylphenidate. Overall, our findings highlight the critical importance of drug-binding kinetics at DAT for determining the in vivo profile of effects produced by psychostimulant drugs.
Collapse
Affiliation(s)
- Marco Niello
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Spyridon Sideromenos
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Ralph Gradisch
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Ronan O´Shea
- Electrophysiology Research Section, National Institute on Drug Abuse, NIH, Baltimore, MD21224
| | - Jakob Schwazer
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Julian Maier
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Nina Kastner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Walter Sandtner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Kathrin Jäntsch
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Carl R. Lupica
- Electrophysiology Research Section, National Institute on Drug Abuse, NIH, Baltimore, MD21224
| | - Alexander F. Hoffman
- Electrophysiology Research Section, National Institute on Drug Abuse, NIH, Baltimore, MD21224
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, 5020Salzburg, Austria
| | - Claus J. Loland
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200Copenhagen, Denmark
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Daniela D. Pollak
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090Vienna, Austria
| | - Michael H. Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD21224
| | - Harald H. Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090Vienna, Austria
- AddRess, Center for Addiction Research and Science, Medical University of Vienna, 1090Vienna, Austria
| |
Collapse
|
5
|
Mayer FP, Niello M, Cintulova D, Sideromenos S, Maier J, Li Y, Bulling S, Kudlacek O, Schicker K, Iwamoto H, Deng F, Wan J, Holy M, Katamish R, Sandtner W, Li Y, Pollak DD, Blakely RD, Mihovilovic MD, Baumann MH, Sitte HH. Serotonin-releasing agents with reduced off-target effects. Mol Psychiatry 2023; 28:722-732. [PMID: 36352123 PMCID: PMC9645344 DOI: 10.1038/s41380-022-01843-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022]
Abstract
Increasing extracellular levels of serotonin (5-HT) in the brain ameliorates symptoms of depression and anxiety-related disorders, e.g., social phobias and post-traumatic stress disorder. Recent evidence from preclinical and clinical studies established the therapeutic potential of drugs inducing the release of 5-HT via the 5-HT-transporter. Nevertheless, current 5-HT releasing compounds under clinical investigation carry the risk for abuse and deleterious side effects. Here, we demonstrate that S-enantiomers of certain ring-substituted cathinones show preference for the release of 5-HT ex vivo and in vivo, and exert 5-HT-associated effects in preclinical behavioral models. Importantly, the lead cathinone compounds (1) do not induce substantial dopamine release and (2) display reduced off-target activity at vesicular monoamine transporters and 5-HT2B-receptors, indicative of low abuse-liability and low potential for adverse events. Taken together, our findings identify these agents as lead compounds that may prove useful for the treatment of disorders where elevation of 5-HT has proven beneficial.
Collapse
Affiliation(s)
- Felix P Mayer
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria.
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA.
| | - Marco Niello
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
| | | | - Spyridon Sideromenos
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Julian Maier
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
| | - Yang Li
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
- Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Simon Bulling
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
| | - Oliver Kudlacek
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
| | - Klaus Schicker
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
| | - Hideki Iwamoto
- Stiles-Nicholson Brain Institute and Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Fei Deng
- IDG McGovern Institute for Brain Research, Peking University, 100871, Beijing, China
| | - Jinxia Wan
- IDG McGovern Institute for Brain Research, Peking University, 100871, Beijing, China
| | - Marion Holy
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
| | - Rania Katamish
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Walter Sandtner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
| | - Yulong Li
- IDG McGovern Institute for Brain Research, Peking University, 100871, Beijing, China
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA
- Stiles-Nicholson Brain Institute and Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA
| | | | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Harald H Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria.
- AddRess, Center for Addiction Research and Science, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Paškan M, Rimpelová S, Svobodová Pavlíčková V, Spálovská D, Setnička V, Kuchař M, Kohout M. 4-Isobutylmethcathinone-A Novel Synthetic Cathinone with High In Vitro Cytotoxicity and Strong Receptor Binding Preference of Enantiomers. Pharmaceuticals (Basel) 2022; 15:ph15121495. [PMID: 36558946 PMCID: PMC9780888 DOI: 10.3390/ph15121495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
New psychoactive substances and among them synthetic cathinones represent a significant threat to human health globally. However, within such a large pool of substances derived from a natural compound ((S)-cathinone), substances with important pharmaceutical uses can be identified, as already documented by bupropione. Therefore, this work aimed to find a synthetic pathway for a novel synthetic cathinone, namely 4-isobutylmethcathinone, and describe its spectroscopic properties and biological activity in vitro. Since cathinones comprise a chiral center in their structure, a method for chiral separation of the substance was elaborated using high-performance liquid chromatography on an analytical and preparative scale. Preparative enantioseparation on a polysaccharide column provided a sufficient amount of the drug for the chiroptical studies leading to the determination of the absolute configuration of enantiomers as well as for their subsequent in vitro cytotoxicity study. The cytotoxicity induced by 4-isobutylmethcathinone was determined in human cells derived from the urinary bladder (5637), neuroblastoma (SH-SY5Y), microglia (HMC-3), and hepatocellular carcinoma (Hep G2), in which the IC50 values after 72 h reached an 18-65 µM concentration. This is significantly higher cytotoxicity in comparison with other synthetic cathinones. In the receptor binding studies, a significant difference in the agonistic effect on dopamine and adrenergic receptors of individual enantiomers was observed. The lack of binding affinity towards the serotonin receptors then relates 4-isobutylmethcathinone to the family of monoamine drugs, such as 3,4-methylenedioxymathamphetamine (ecstasy, MDMA).
Collapse
Affiliation(s)
- Martin Paškan
- Department of Organic Chemistry, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Vladimíra Svobodová Pavlíčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Dita Spálovská
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Vladimír Setnička
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Martin Kuchař
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Michal Kohout
- Department of Organic Chemistry, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
- Correspondence:
| |
Collapse
|
7
|
Stereoselectivity in the Membrane Transport of Phenylethylamine Derivatives by Human Monoamine Transporters and Organic Cation Transporters 1, 2, and 3. Biomolecules 2022; 12:biom12101507. [PMID: 36291716 PMCID: PMC9599461 DOI: 10.3390/biom12101507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Stereoselectivity is well known and very pronounced in drug metabolism and receptor binding. However, much less is known about stereoselectivity in drug membrane transport. Here, we characterized the stereoselective cell uptake of chiral phenylethylamine derivatives by human monoamine transporters (NET, DAT, and SERT) and organic cation transporters (OCT1, OCT2, and OCT3). Stereoselectivity differed extensively between closely related transporters. High-affinity monoamine transporters (MATs) showed up to 2.4-fold stereoselective uptake of norepinephrine and epinephrine as well as of numerous analogs. While NET and DAT preferentially transported (S)-norepinephrine, SERT preferred the (R)-enantiomer. In contrast, NET and DAT showed higher transport for (R)-epinephrine and SERT for (S)-epinephrine. Generally, MAT stereoselectivity was lower than expected from their high affinity to several catecholamines and from the high stereoselectivity of some inhibitors used as antidepressants. Additionally, the OCTs differed strongly in their stereoselectivity. While OCT1 showed almost no stereoselective uptake, OCT2 was characterized by a roughly 2-fold preference for most (R)-enantiomers of the phenylethylamines. In contrast, OCT3 transported norphenylephrine and phenylephrine with 3.9-fold and 3.3-fold preference for their (R)-enantiomers, respectively, while the para-hydroxylated octopamine and synephrine showed no stereoselective OCT3 transport. Altogether, our data demonstrate that stereoselectivity is highly transporter-to-substrate specific and highly diverse even between homologous transporters.
Collapse
|
8
|
A Novel and Selective Dopamine Transporter Inhibitor, (S)-MK-26, Promotes Hippocampal Synaptic Plasticity and Restores Effort-Related Motivational Dysfunctions. Biomolecules 2022; 12:biom12070881. [PMID: 35883437 PMCID: PMC9312958 DOI: 10.3390/biom12070881] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
Dopamine (DA), the most abundant human brain catecholaminergic neurotransmitter, modulates key behavioral and neurological processes in young and senescent brains, including motricity, sleep, attention, emotion, learning and memory, and social and reward-seeking behaviors. The DA transporter (DAT) regulates transsynaptic DA levels, influencing all these processes. Compounds targeting DAT (e.g., cocaine and amphetamines) were historically used to shape mood and cognition, but these substances typically lead to severe negative side effects (tolerance, abuse, addiction, and dependence). DA/DAT signaling dysfunctions are associated with neuropsychiatric and progressive brain disorders, including Parkinson’s and Alzheimer diseases, drug addiction and dementia, resulting in devastating personal and familial concerns and high socioeconomic costs worldwide. The development of low-side-effect, new/selective medicaments with reduced abuse-liability and which ameliorate DA/DAT-related dysfunctions is therefore crucial in the fields of medicine and healthcare. Using the rat as experimental animal model, the present work describes the synthesis and pharmacological profile of (S)-MK-26, a new modafinil analogue with markedly improved potency and selectivity for DAT over parent drug. Ex vivo electrophysiology revealed significantly augmented hippocampal long-term synaptic potentiation upon acute, intraperitoneally delivered (S)-MK-26 treatment, whereas in vivo experiments in the hole-board test showed only lesser effects on reference memory performance in aged rats. However, in effort-related FR5/chow and PROG/chow feeding choice experiments, (S)-MK-26 treatment reversed the depression-like behavior induced by the dopamine-depleting drug tetrabenazine (TBZ) and increased the selection of high-effort alternatives. Moreover, in in vivo microdialysis experiments, (S)-MK-26 significantly increased extracellular DA levels in the prefrontal cortex and in nucleus accumbens core and shell. These studies highlight (S)-MK-26 as a potent enhancer of transsynaptic DA and promoter of synaptic plasticity, with predominant beneficial effects on effort-related behaviors, thus proposing therapeutic potentials for (S)-MK-26 in the treatment of low-effort exertion and motivational dysfunctions characteristic of depression and aging-related disorders.
Collapse
|
9
|
Interaction Profiles of Central Nervous System Active Drugs at Human Organic Cation Transporters 1-3 and Human Plasma Membrane Monoamine Transporter. Int J Mol Sci 2021; 22:ijms222312995. [PMID: 34884800 PMCID: PMC8657792 DOI: 10.3390/ijms222312995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/31/2022] Open
Abstract
Many psychoactive compounds have been shown to primarily interact with high-affinity and low-capacity solute carrier 6 (SLC6) monoamine transporters for norepinephrine (NET; norepinephrine transporter), dopamine (DAT; dopamine transporter) and serotonin (SERT; serotonin transporter). Previous studies indicate an overlap between the inhibitory capacities of substances at SLC6 and SLC22 human organic cation transporters (SLC22A1-3; hOCT1-3) and the human plasma membrane monoamine transporter (SLC29A4; hPMAT), which can be classified as high-capacity, low-affinity monoamine transporters. However, interactions between central nervous system active substances, the OCTs, and the functionally-related PMAT have largely been understudied. Herein, we report data from 17 psychoactive substances interacting with the SLC6 monoamine transporters, concerning their potential to interact with the human OCT isoforms and hPMAT by utilizing radiotracer-based in vitro uptake inhibition assays at stably expressing human embryonic kidney 293 cells (HEK293) cells. Many compounds inhibit substrate uptake by hOCT1 and hOCT2 in the low micromolar range, whereas only a few substances interact with hOCT3 and hPMAT. Interestingly, methylphenidate and ketamine selectively interact with hOCT1 or hOCT2, respectively. Additionally, 3,4-methylenedioxymethamphetamine (MDMA) is a potent inhibitor of hOCT1 and 2 and hPMAT. Enantiospecific differences of R- and S-α-pyrrolidinovalerophenone (R- and S-α-PVP) and R- and S-citalopram and the effects of aromatic substituents are explored. Our results highlight the significance of investigating drug interactions with hOCTs and hPMAT, due to their role in regulating monoamine concentrations and xenobiotic clearance.
Collapse
|
10
|
Overlap and Specificity in the Substrate Spectra of Human Monoamine Transporters and Organic Cation Transporters 1, 2, and 3. Int J Mol Sci 2021; 22:ijms222312816. [PMID: 34884618 PMCID: PMC8657982 DOI: 10.3390/ijms222312816] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
Human monoamine transporters (MATs) are cation transporters critically involved in neuronal signal transmission. While inhibitors of MATs have been intensively studied, their substrate spectra have received far less attention. Polyspecific organic cation transporters (OCTs), predominantly known for their role in hepatic and renal drug elimination, are also expressed in the central nervous system and might modulate monoaminergic signaling. Using HEK293 cells overexpressing MATs or OCTs, we compared uptake of 48 compounds, mainly phenethylamine and tryptamine derivatives including matched molecular pairs, across noradrenaline, dopamine and serotonin transporters and OCTs (1, 2, and 3). Generally, MATs showed surprisingly high transport activities for numerous analogs of neurotransmitters, but their substrate spectra were limited by molar mass. Human OCT2 showed the broadest substrate spectrum, and also the highest overlap with MATs substrates. Comparative kinetic analyses revealed that the radiotracer meta-iodobenzylguanidine had the most balanced uptake across all six transporters. Matched molecular pair analyses comparing MAT and OCT uptake using the same methodology could provide a better understanding of structural determinants for high cell uptake by MATs or OCTs. The data may result in a better understanding of pharmacokinetics and toxicokinetics of small molecular organic cations and, possibly, in the development of more specific radiotracers for MATs.
Collapse
|