1
|
Yan Ang Q, Plichta D, Kim S, Hyun-A Kim I, Gregory S, Xia Y, Lau H, Xavier R, Ananthakrishnan AN. Differential Impact of Smoking on Methylome and Transcriptome in Crohn's Disease and Ulcerative Colitis. Inflamm Bowel Dis 2024; 30:981-991. [PMID: 38001042 PMCID: PMC11145016 DOI: 10.1093/ibd/izad268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Smoking is an environmental factor that differentially impacts Crohn's disease (CD) and ulcerative colitis (UC). The mechanism of impact of smoking on disease risk and clinical outcomes remains to be established. METHODS This study used a prospective cohort of patients with CD or UC. Self-reported smoking status was validated using serum cotinine measurement. We profiled methylation changes in peripheral blood using the Illumina Methylation BeadChip. Transcriptomic profiling was performed on ileal and colonic tissue using an Illumina TruSeq platform. We compared the methylation and transcriptional changes in current, former, and never smokers stratified by disease type. RESULTS Our cohort included 200 patients with CD or UC with methylation profiles and 160 with transcriptomic data. The mean serum cotinine level was higher in current compared with former or never smokers. Epigenetic changes common to both CD and UC included hypomethylation at AHRR. Smoking-associated MGAT3 hypomethylation was associated with severe disease course only in UC, while IER3 hypomethylation was associated with worse course only in CD. Smoking downregulated several inflammatory pathways in UC. Current smoking in CD but not in UC was associated with upregulation of several genes mediating Paneth cell function. Genes with opposite direction of effects in CD and UC include HSD3B2 and GSTA1. CONCLUSIONS Our findings suggest both common and differential effects of cigarette smoking on CD and UC. Paneth cell dysfunction may mediate adverse impact of smoking on CD. Bile acid and oxidative stress pathways may be relevant for the differential effect of smoking on CD and UC.
Collapse
Affiliation(s)
| | | | - Sean Kim
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Iris Hyun-A Kim
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Sadie Gregory
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Yan Xia
- Broad Institute, Cambridge, MA, USA
| | - Helena Lau
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Ramnik Xavier
- Broad Institute, Cambridge, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Arosa L, Camba-Gómez M, Golubnitschaja O, Conde-Aranda J. Predictive, preventive and personalised approach as a conceptual and technological innovation in primary and secondary care of inflammatory bowel disease benefiting affected individuals and populations. EPMA J 2024; 15:111-123. [PMID: 38463620 PMCID: PMC10923750 DOI: 10.1007/s13167-024-00351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 03/12/2024]
Abstract
Inflammatory bowel disease (IBD) is a global health burden which carries lifelong morbidity affecting all age groups in populations with the disease-specific peak of the age groups ranging between 15 and 35 years, which are of great economic importance for the society. An accelerating incidence of IBD is reported for newly industrialised countries, whereas stabilising incidence but increasing prevalence is typical for countries with a Westernised lifestyle, such as the European area and the USA. Although the aetiology of IBD is largely unknown, the interplay between the genetic, environmental, immunological, and microbial components is decisive for the disease manifestation, course, severity and individual outcomes. Contextually, the creation of an individualised patient profile is crucial for the cost-effective disease management in primary and secondary care of IBD. The proposed pathomechanisms include intestinal pathoflora and dysbiosis, chronic inflammation and mitochondrial impairments, amongst others, which collectively may reveal individual molecular signatures defining IBD subtypes and leading to clinical phenotypes, patient stratification and cost-effective protection against health-to-disease transition and treatments tailored to individualised patient profiles-all the pillars of an advanced 3PM approach. The paradigm change from reactive medical services to predictive diagnostics, cost-effective targeted prevention and treatments tailored to individualised patient profiles in overall IBD management holds a promise to meet patient needs in primary and secondary care, to increase the life-quality of affected individuals and to improve health economy in the area of IBD management. This article analyses current achievements and provides the roadmap for future developments in the area in the context of 3P medicine benefiting society at large.
Collapse
Affiliation(s)
- Laura Arosa
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), Laboratory 15, Trav. Choupana S/N, Building C, Level -2, 15706 Santiago de Compostela, Spain
| | - Miguel Camba-Gómez
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), Laboratory 15, Trav. Choupana S/N, Building C, Level -2, 15706 Santiago de Compostela, Spain
| | - Olga Golubnitschaja
- 3P Medicine Research Unit, University Hospital, Rheinische Friedrich-Wilhelms Universität Bonn, 53127 Bonn, Germany
| | - Javier Conde-Aranda
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), Laboratory 15, Trav. Choupana S/N, Building C, Level -2, 15706 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Shkunnikova S, Mijakovac A, Sironic L, Hanic M, Lauc G, Kavur MM. IgG glycans in health and disease: Prediction, intervention, prognosis, and therapy. Biotechnol Adv 2023; 67:108169. [PMID: 37207876 DOI: 10.1016/j.biotechadv.2023.108169] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Immunoglobulin (IgG) glycosylation is a complex enzymatically controlled process, essential for the structure and function of IgG. IgG glycome is relatively stable in the state of homeostasis, yet its alterations have been associated with aging, pollution and toxic exposure, as well as various diseases, including autoimmune and inflammatory diseases, cardiometabolic diseases, infectious diseases and cancer. IgG is also an effector molecule directly involved in the inflammation processes included in the pathogenesis of many diseases. Numerous recently published studies support the idea that IgG N-glycosylation fine-tunes the immune response and plays a significant role in chronic inflammation. This makes it a promising novel biomarker of biological age, and a prognostic, diagnostic and treatment evaluation tool. Here we provide an overview of the current state of knowledge regarding the IgG glycosylation in health and disease, and its potential applications in pro-active prevention and monitoring of various health interventions.
Collapse
Affiliation(s)
- Sofia Shkunnikova
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Anika Mijakovac
- University of Zagreb, Faculty of Science, Department of Biology, Horvatovac 102a, Zagreb, Croatia
| | - Lucija Sironic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Maja Hanic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia; University of Zagreb, Faculty of Pharmacy and Biochemistry, Ulica Ante Kovačića 1, Zagreb, Croatia
| | | |
Collapse
|
4
|
Alves I, Fernandes Â, Santos-Pereira B, Azevedo CM, Pinho SS. Glycans as a key factor in self and non-self discrimination: Impact on the breach of immune tolerance. FEBS Lett 2022; 596:1485-1502. [PMID: 35383918 DOI: 10.1002/1873-3468.14347] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Glycans are carbohydrates that are made by all organisms and covalently conjugated to other biomolecules. Glycans cover the surface of both human cells and pathogens and are fundamental to defining the identity of a cell or an organism, thereby contributing to discriminating self from non-self. As such, glycans are a class of "Self-Associated Molecular Patterns" that can fine-tune host inflammatory processes. In fact, glycans can be sensed and recognized by a variety of glycan-binding proteins (GBP) expressed by immune cells, such as galectins, siglecs and C-type lectins, which recognize changes in the cellular glycosylation, instructing both pro-inflammatory or anti-inflammatory responses. In this review, we introduce glycans as cell-identification structures, discussing how glycans modulate host-pathogen interactions and how they can fine-tune inflammatory processes associated with infection, inflammation and autoimmunity. Finally, from the clinical standpoint, we discuss how glycoscience research can benefit life sciences and clinical medicine by providing a source of valuable biomarkers and therapeutic targets for immunity.
Collapse
Affiliation(s)
- Inês Alves
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ângela Fernandes
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Beatriz Santos-Pereira
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| |
Collapse
|