1
|
Shao C, Xia W, Liu Y. Bioinformatic Analysis and Molecular Docking Identify Isorhamnetin Is a Candidate Compound in the Treatment of Pulmonary Artery Hypertension. Anatol J Cardiol 2025; 29:52-65. [PMID: 39605239 PMCID: PMC11793806 DOI: 10.14744/anatoljcardiol.2024.4723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The current study aims to identify the key pathways and potential therapeutic targets for pulmonary arterial hypertension (PAH) and to further evaluate the anti-PAH effects of isorhamnetin. METHODS The dataset of gene expression profiling for PAH (GSE113439) was downloaded from the gene expression omnibus (GEO) database. Isorhamnetin target genes were extracted from the comparative toxicogenomics database (CTD). Various bioinformatics methods were employed to identify the core pathways associated with PAH and potential intervention targets. Molecular docking was conducted between the interacting target and the candidate compound, isorhamnetin. RESULTS One thousand nine hundred sixty-two upregulated genes and 642 downregulated genes were identified. Molecular complex detection analyses revealed that the significant biological processes associated with upregulated genes included DNA damage response, mitotic cell cycle, and chromosome organization. In contrast, the signifi ant biological processes related to downregulated genes encompassed cellular response to growth factor stimulus, response to growth factor, and blood vessel development. Immune infilt ation analysis indicated that PAH is associated with signifi ant changes in the distribution of immune cells and differential expression of immune checkpoints. Furthermore, 58 isorhamnetin targets were extracted from the CTD, and we identified 1 interacting gene, NFE2L2, among the differentially expressed genes (DEGs), DEGs related to ferroptosis, and isorhamnetin targets. Isorhamnetin demonstrated strong affinities with vascular endothelial growth factor (VEGF) receptors and transcription factors (ATM and ZNF24) associated with VEGFs, as well as the ferroptosis protein NFE2L2. CONCLUSIONS Pulmonary arterial hypertension is characterized by a series of abnormalities in downstream molecular signaling pathways, including DNA damage, immune dysregulation, VEGF signaling deficienc , and the ferroptosis process. These may represent the core pathophysiological mechanisms of PAH. Ferroptosis-related genes, such as NFE2L2 and TF (ATM, ZNF24) associated with VEGFs, are potential therapeutic targets that contribute to the mechanisms mentioned above. Isorhamnetin is a promising candidate compound for the treatment of PAH.
Collapse
Affiliation(s)
- Chen Shao
- Department of Nursing Science, The Second People’s Hospital of Lianyungang, Jiangsu, China
| | - Wei Xia
- Department of Pharmacology, The Second People’s Hospital of Lianyungang, Jiangsu, China
| | - Yang Liu
- Department of Internal and Pediatrics, School of Clinical Medicine, Qilu Medical University, Zibo, Shandong, China
| |
Collapse
|
2
|
Jantan I, Norahmad NA, Yuandani, Haque MA, Mohamed-Hussein ZA, Mohd Abd Razak MR, Syed Mohamed AF, Lam KW, Ibrahim S. Inhibitory effect of food-functioned phytochemicals on dysregulated inflammatory pathways triggered by SARS-CoV-2: a mechanistic review. Crit Rev Food Sci Nutr 2024; 65:2405-2430. [PMID: 38619217 DOI: 10.1080/10408398.2024.2341266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Inflammatory cascades of the dysregulated inflammatory pathways in COVID-19 can cause excessive production of pro-inflammatory cytokines and chemokines leading to cytokine storm syndrome (CSS). The molecular cascades involved in the pathways may be targeted for discovery of new anti-inflammatory agents. Many plant extracts have been used clinically in the management of COVID-19, however, their immunosuppressive activities were mainly investigated based on in silico activity. Dietary flavonoids of the extracts such as quercetin, luteolin, kaempferol, naringenin, isorhamnetin, baicalein, wogonin, and rutin were commonly identified as responsible for their inhibitory effects. The present review critically analyzes the anti-inflammatory effects and mechanisms of phytochemicals, including dietary compounds against cytokine storm (CS) and hyperinflammation via inhibition of the altered inflammatory pathways triggered by SARS-CoV-2, published since the emergence of COVID-19 in December 2019. Only a few phytochemicals, mainly dietary compounds such as nanocurcumin, melatonin, quercetin, 6-shagoal, kaempferol, resveratrol, andrographolide, and colchicine have been investigated either in in silico or preliminary clinical studies to evaluate their anti-inflammatory effects against COVID-19. Sufficient pre-clinical studies on safety and efficacy of anti-inflammatory effects of the phytochemicals must be performed prior to proper clinical studies to develop them into therapeutic adjuvants in the prevention and treatmemt of COVID-19 symptoms.
Collapse
Affiliation(s)
- Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Nor Azrina Norahmad
- Herbal Medicine Research Centre, Institute for Medical Research, Shah Alam, Malaysia
| | - Yuandani
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Md Areeful Haque
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | | | | | - Kok Wai Lam
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sarah Ibrahim
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
3
|
Wang Z, Cheng F, Xu Y, Li X, Meng S. Role of innate immunity in SARS-CoV-2 infection. BIOSAFETY AND HEALTH 2023; 5:280-288. [PMID: 40078906 PMCID: PMC11894970 DOI: 10.1016/j.bsheal.2023.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 03/14/2025] Open
Abstract
During severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, activated macrophages, dendritic cells (D.C.), neutrophils, and natural killer (N.K.) cells are the first defense against infection. These immune effectors trap and ingest the virus, kill infected epithelial cells, or produce anti-viral cytokines. Evidence suggests that aging, obesity, and mental illness can lead to weakened innate immunity and, thus, are all associated with elevated infection and severe disease progression of coronavirus disease 2019 (COVID-19). Innate immune defense networks play a fundamental role in suppressing viral replication, infection establishment, and viral pathogenesis of SARS-CoV-2 and other respiratory viruses.
Collapse
Affiliation(s)
- Zihao Wang
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Cheng
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxiu Xu
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Li
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Songdong Meng
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Rizvi ZA, Madan U, Tripathy MR, Goswami S, Mani S, Awasthi A, Dikshit M. Evaluation of Ayush-64 (a Polyherbal Formulation) and Its Ingredients in the Syrian Hamster Model for SARS-CoV-2 Infection Reveals the Preventative Potential of Alstonia scholaris. Pharmaceuticals (Basel) 2023; 16:1333. [PMID: 37765142 PMCID: PMC10534577 DOI: 10.3390/ph16091333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/16/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
In the current study, we evaluated the efficacy of Ayush-64 (A64), a polyherbal formulation containing Alstonia scholaris (L.) R. Br. (A. scholaris), Caesalpinia crista L. (C. crista), Picrorhiza kurroa Royle ex Benth (P. kurroa), and Swertia chirata (Roxb.) H. Karst. (S. chirata) against COVID-19 in a Syrian hamster infection model. Preventative use of A64 resulted in the late-phase recovery of body weight loss in severe acquired respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected hamsters, suppression of pro-inflammatory cytokines, and blunted pulmonary pathology. In addition, we also investigated the efficacy of individual ingredients of A64, viz., A. scholaris, C. crista, P. kurroa, and S. chirata, in the hamster model. The hamster challenge data showed robust anti-viral and immunomodulatory potential in A. scholaris, followed by P. kurroa. However, C. crista and S. chirata of A64 showed prominent immunomodulatory potential without limiting the lung viral load. In order to better understand the immunomodulatory potential of these herbal extracts, we used an in vitro assay of helper T cell differentiation and found that A. scholaris mediated a more profound suppression of Th1, Th2, and Th17 cell differentiation as compared to A64 and other ingredients. Taken together, our animal study data identifies the ameliorative potential of A64 in mitigating coronavirus disease-19 (COVID-19) pulmonary pathology. A. scholaris, a constituent extract of A64, showed relatively higher anti-viral and immunomodulatory potential against COVID-19. The present study warrants further investigations to identify the active pharmaceutical ingredients of A. scholaris for further studies.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Immuno-Biology Lab, Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India; (U.M.); (M.R.T.); (S.G.)
- Immunology-Core Lab, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Upasna Madan
- Immuno-Biology Lab, Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India; (U.M.); (M.R.T.); (S.G.)
- Immunology-Core Lab, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Manas Ranjan Tripathy
- Immuno-Biology Lab, Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India; (U.M.); (M.R.T.); (S.G.)
- Immunology-Core Lab, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Sandeep Goswami
- Immuno-Biology Lab, Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India; (U.M.); (M.R.T.); (S.G.)
- Immunology-Core Lab, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Shailendra Mani
- Non-Communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India;
| | - Amit Awasthi
- Immuno-Biology Lab, Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India; (U.M.); (M.R.T.); (S.G.)
- Immunology-Core Lab, Translational Health Science and Technology Institute (THSTI), NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Madhu Dikshit
- Non-Communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India;
- Pharmacology Department, CSIR-Central Drug Research Institute, Sitapur Rd., Sector 10, Jankipuram Extension, Lucknow 226031, India
| |
Collapse
|
5
|
Onyeaghala AA, Anyiam AF, Husaini DC, Onyeaghala EO, Obi E. Herbal Supplements as Treatment Options for COVID-19: A call for Clinical Development of Herbal Supplements for Emerging and Re-Emerging Viral Threats in Sub-Saharan Africa. SCIENTIFIC AFRICAN 2023; 20:e01627. [PMID: 36974333 PMCID: PMC9985929 DOI: 10.1016/j.sciaf.2023.e01627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023] Open
Abstract
The advent of Corona virus Disease 2019 (COVID-19) distorted health systems of many countries. Efforts have been made to either develop new treatment solutions such as vaccines or repurpose previously adopted drugs. Challenges in accessing available treatment, inadequate, non-existent, or overstretched healthcare facilities, long COVID disease, cultural practices and beliefs about vaccination, vaccine hesitancy, availability, accessibility and perceived safety of herbal supplements seem to be major factors propelling individuals to use herbal supplements. Published reports advocating for clinical development of herbal supplements for COVID-19 and other emerging and re-emerging viral diseases are sparse. This paper aims to review the pathogenesis of COVID-19, use of herbal products during the pandemic and make case for clinical development of herbal supplements through the adoption of modern and acceptable technologies and research processes. This was a scoping review. Database searches of Google Scholar, PubMed and ResearchGate among others were performed using related keywords to identify relevant journals and lists of primary articles. Clinical trial databases:-Clinicaltrial.gov, Pan African Clinical Trial Registry (PACTR) and WHO international clinical trial registry (ICTRP) were reviewed to extract data. The use of herbal supplements during COVID-19 was not only peculiar to individuals living in Sub-Saharan Africa, but a global practice. Herbal supplements recommended to manage COVID-19 have not been validated using clinical trials. Available data showed that the number of herbal supplements undergoing clinical trial for COVID-19 indication in Africa was low. The availability of medicinal plants in Sub-Saharan Africa if well explored has great potentials to address various emerging and re-emerging viral diseases confronting the region. The economic potential of clinically validated herbal supplements are huge, and tapping into this opportunity created by preference of population to herbal supplement could increase export of herbal supplement and gross domestic product (GDP) of respective countries in Africa.
Collapse
Affiliation(s)
- Augustine Anayochukwu Onyeaghala
- Unit of Clinical Chemistry, Department of Medical Laboratory Science, University College Hospital, Ibadan,Unit of Clinical Chemistry, Department of Medical Laboratory Science, Chrisland University, Owode, Abeokuta, Ogun State,Corresponding Author
| | - Arinze Favour Anyiam
- Department of Medical Laboratory Science, Thomas Adewumi University, Oko, Kwara State
| | - Danladi Chiroma Husaini
- Department of Allied Health (Pharmacy), Faculty of Health Sciences, University of Belize, Belize, Central America
| | | | - Ejeatuluchukwu Obi
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Science, College of Health Science, Nnamdi Azikiwe University, Nnewi, Campus, Nnewi
| |
Collapse
|
6
|
Gandhi Y, Mishra SK, Rawat H, Grewal J, Kumar R, Shakya SK, Jain VK, Babu G, Singh A, Singh R, Acharya R, Kumar V. Phytomedicines explored under in vitro and in silico studies against coronavirus: An opportunity to develop traditional medicines. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2022; 151:451-483. [PMID: 35530267 PMCID: PMC9057940 DOI: 10.1016/j.sajb.2022.04.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 05/21/2023]
Abstract
The widespread COVID-19 pandemic, caused by novel coronavirus SARS-CoV-2, has emanated as one of the most life-threatening transmissible diseases. Currently, the repurposed drugs such as remdesivir, azithromycine, chloroquine, and hydroxychloroquine are being employed in the management of COVID-19 but their adverse effects are a matter of concern. In this regard, alternative treatment options i.e., traditional medicine, medicinal plants, and their phytochemicals, which exhibit significant therapeutic efficacy and show a low toxicity profile, are being explored. The current review aims at unraveling the promising medicinal plants, phytochemicals, and traditional medicines against SARS-CoV-2 to discover phytomedicines for the management of COVID-19 on the basis of their potent antiviral activities against coronaviruses, as demonstrated in various biochemical and computational chemical biology studies. The review consists of integrative and updated information on the potential traditional medicines against COVID-19 and will facilitate researchers to develop traditional medicines for the management of COVID-19.
Collapse
Affiliation(s)
- Yashika Gandhi
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Sujeet K Mishra
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Hemant Rawat
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Jyotika Grewal
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Ravi Kumar
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Santosh K Shakya
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Vipin Kumar Jain
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - G Babu
- Department of Ayurveda, Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Arjun Singh
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Ravindra Singh
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Rabinarayan Acharya
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Vijay Kumar
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| |
Collapse
|
7
|
Balkrishna A, Goswami S, Singh H, Gohel V, Dev R, Haldar S, Varshney A. Herbo-mineral formulation, Divya-Swasari-Vati averts SARS-CoV-2 pseudovirus entry into human alveolar epithelial cells by interfering with spike protein-ACE 2 interaction and IL-6/TNF-α /NF-κB signaling. Front Pharmacol 2022; 13:1024830. [PMID: 36386162 PMCID: PMC9643876 DOI: 10.3389/fphar.2022.1024830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 08/16/2023] Open
Abstract
The herbo-mineral formulation, Divya-Swasari-Vati (DSV), is a well-known Ayurvedic medication for respiratory ailments. In a recent pre-clinical study, DSV rescued humanized zebrafish from SARS-CoV-2 S-protein-induced pathologies. This merited for an independent evaluation of DSV as a SARS-CoV-2 entry inhibitor in the human host cell and its effectiveness in ameliorating associated cytokine production. The ELISA-based protein-protein interaction study showed that DSV inhibited the interactions of recombinant human ACE 2 with three different variants of S proteins, namely, Smut 1 (the first reported variant), Smut 2 (W436R variant) and Smut 3 (D614G variant). Entry of recombinant vesicular stomatitis SARS-CoV-2 (VSVppSARS-2S) pseudovirus, having firefly luciferase and EGFP reporters, was assessed through luciferase assay and fluorescent microscopy. DSV exhibited dose-dependent inhibition of VSVppSARS-2S pseudovirus entry into human lung epithelial A549 cells and also suppressed elevated levels of secreted pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) induced by viral infection mimicking Poly I:C-, S-protein- and VSVppSARS-2S pseudovirus. In human immune cells, DSV also moderated TNF-α-mediated NF-κB induction, in a dose-dependent manner. The observed anti-viral effect of DSV against SARS-CoV-2 is attributable to the presence of different metabolites Summarily, the observations from this study biochemically demonstrated that DSV interfered with the interaction between SARS-CoV-2 S-protein and human ACE 2 receptor which consequently, inhibited viral entry into the host cells and concomitant induction of inflammatory response.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
| | - Sudeep Goswami
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Hoshiyar Singh
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Vivek Gohel
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Swati Haldar
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Chen JY, Xiao-Yun Tian, Wei SS, Yang YJ, Deng S, Jiao CJ, Wang CJ, Chu KD, Ma XQ, Xu W. Perspectives of herbs and their natural compounds, and herb formulas on treating diverse diseases through regulating complicated JAK/STAT signaling. Front Pharmacol 2022; 13:993862. [PMID: 36324680 PMCID: PMC9619051 DOI: 10.3389/fphar.2022.993862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
JAK/STAT signaling pathways are closely associated with multiple biological processes involved in cell proliferation, apoptosis, inflammation, differentiation, immune response, and epigenetics. Abnormal activation of the STAT pathway can contribute to disease progressions under various conditions. Moreover, tofacitinib and baricitinib as the JAK/STAT inhibitors have been recently approved by the FDA for rheumatology disease treatment. Therefore, influences on the STAT signaling pathway have potential and perspective approaches for diverse diseases. Chinese herbs in traditional Chinese medicine (TCM), which are widespread throughout China, are the gold resources of China and have been extensively used for treating multiple diseases for thousands of years. However, Chinese herbs and herb formulas are characterized by complicated components, resulting in various targets and pathways in treating diseases, which limits their approval and applications. With the development of chemistry and pharmacology, active ingredients of TCM and herbs and underlying mechanisms have been further identified and confirmed by pharmacists and chemists, which improved, to some extent, awkward limitations, approval, and applications regarding TCM and herbs. In this review, we summarized various herbs, herb formulas, natural compounds, and phytochemicals isolated from herbs that have the potential for regulating multiple biological processes via modulation of the JAK/STAT signaling pathway based on the published work. Our study will provide support for revealing TCM, their active compounds that treat diseases, and the underlying mechanism, further improving the rapid spread of TCM to the world.
Collapse
|
9
|
Palani V, Chinnaraj S, Shanmugasundaram M, Malaisamy A, Maluventhen V, Arumugam VA, Rengasamy KRR, Balasubramanian B, Liu WC, Arumugam M. Derivation, Functionalization of (S)-Goniothalamin from Goniothalamus wightii and Their Derivative Targets SARS-CoV-2 M Pro, S Pro, and RdRp: A Pharmacological Perspective. Molecules 2022; 27:6962. [PMID: 36296552 PMCID: PMC9612040 DOI: 10.3390/molecules27206962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
The tracing of an alternative drug, Phytochemicals is a promising approach to the viral threats that have emerged over the past two years. Across the world, herbal medicine is a better solution against anti-viral diseases during pandemic periods. Goniothalamus wightii is an herbal plant, which has diverse bioactive compounds with anticancer, antioxidant, and anti-viral properties. The aim of the study was to isolate the compound by chromatography studies and functionalization by FT-IR, LC-MS, and NMR (C-NMR, H-NMR). As a result, the current work focuses on whether (S)-Goniathalamin and its analogue could act as natural anti-viral molecules for multiple target proteins viz., MPro, RdRp, and SPro, which are required for SARS-CoV-2 infection. Overall, 954 compounds were examined and the molecular-docking studies were performed on the maestro platform of Schrodinger software. Molecular-dynamics simulation studies were performed on two complex major compounds to confirm their affinity across 150 simulations. This research suggests that plant-based drugs have high levels of antiviral properties against coronavirus. However, more research is needed to verify its antiviral properties.
Collapse
Affiliation(s)
- Vino Palani
- Department of Botany, Periyar University, Salem 636011, India
| | | | | | - Arunkumar Malaisamy
- Integrative Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Viji Maluventhen
- Department of Botany, Thiagarajar College, Madurai 625009, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India
| | - Kannan R. R. Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| | | | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | | |
Collapse
|
10
|
Rizvi ZA, Babele P, Sadhu S, Madan U, Tripathy MR, Goswami S, Mani S, Kumar S, Awasthi A, Dikshit M. Prophylactic treatment of Glycyrrhiza glabra mitigates COVID-19 pathology through inhibition of pro-inflammatory cytokines in the hamster model and NETosis. Front Immunol 2022; 13:945583. [PMID: 36238303 PMCID: PMC9550929 DOI: 10.3389/fimmu.2022.945583] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
Severe coronavirus disease (COVID-19) is accompanied by acute respiratory distress syndrome and pulmonary pathology, and is presented mostly with an inflammatory cytokine release, a dysregulated immune response, a skewed neutrophil/lymphocyte ratio, and a hypercoagulable state. Though vaccinations have proved effective in reducing the COVID-19-related mortality, the limitation of the use of vaccine against immunocompromised individuals, those with comorbidity, and emerging variants remains a concern. In the current study, we investigate for the first time the efficacy of the Glycyrrhiza glabra (GG) extract, a potent immunomodulator, against SARS-CoV-2 infection in hamsters. Prophylactic treatment with GG showed protection against loss in body weight and a 35%–40% decrease in lung viral load along with reduced lung pathology in the hamster model. Remarkably, GG reduced the mRNA expression of pro-inflammatory cytokines and plasminogen activator inhibitor-1 (PAI-1). In vitro, GG acted as a potent immunomodulator by reducing Th2 and Th17 differentiation and IL-4 and IL-17A cytokine production. In addition, GG also showed robust potential to suppress ROS, mtROS, and NET generation in a concentration-dependent manner in both human polymorphonuclear neutrophils (PMNs) and murine bone marrow-derived neutrophils (BMDNs). Taken together, we provide evidence for the protective efficacy of GG against COVID-19 and its putative mechanistic insight through its immunomodulatory properties. Our study provides the proof of concept for GG efficacy against SARS-CoV-2 using a hamster model and opens the path for further studies aimed at identifying the active ingredients of GG and its efficacy in COVID-19 clinical cases.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Prabhakar Babele
- Noncommunicable Disease Centre, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Srikanth Sadhu
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Upasna Madan
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Manas Ranjan Tripathy
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Sandeep Goswami
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Shailendra Mani
- Noncommunicable Disease Centre, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Amit Awasthi
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- *Correspondence: Madhu Dikshit, ; ; Amit Awasthi,
| | - Madhu Dikshit
- Noncommunicable Disease Centre, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- *Correspondence: Madhu Dikshit, ; ; Amit Awasthi,
| |
Collapse
|
11
|
Fang T, Zhou S, Qian C, Yan X, Yin X, Fan X, Zhao P, Liao Y, Shi L, Chang Y, Ma XF. Integrated metabolomics and transcriptomics insights on flavonoid biosynthesis of a medicinal functional forage, Agriophyllum squarrosum (L.), based on a common garden trial covering six ecotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:985572. [PMID: 36204072 PMCID: PMC9530573 DOI: 10.3389/fpls.2022.985572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Agriophyllum squarrosum (L.) Moq., well known as sandrice, is an important wild forage in sandy areas and a promising edible and medicinal resource plant with great domestication potential. Previous studies showed flavonoids are one of the most abundant medicinal ingredients in sandrice, whereby isorhamnetin and isorhamnetin-3-glycoside were the top two flavonols with multiple health benefits. However, the molecular regulatory mechanisms of flavonoids in sandrice remain largely unclear. Based on a common garden trial, in this study, an integrated transcriptomic and flavonoids-targeted metabolomic analysis was performed on the vegetative and reproductive periods of six sandrice ecotypes, whose original habitats covered a variety of environmental factor gradients. Multiple linear stepwise regression analysis unveiled that flavonoid accumulation in sandrice was positively correlated with temperature and UVB and negatively affected by precipitation and sunshine duration, respectively. Weighted co-expression network analysis (WGCNA) indicated the bHLH and MYB transcription factor (TF) families might play key roles in sandrice flavonoid biosynthesis regulation. A total of 22,778 differentially expressed genes (DEGs) were identified between ecotype DL and ecotype AEX, the two extremes in most environmental factors, whereby 85 DEGs could be related to known flavonoid biosynthesis pathway. A sandrice flavonoid biosynthesis network embracing the detected 23 flavonoids in this research was constructed. Gene families Plant flavonoid O-methyltransferase (AsPFOMT) and UDP-glucuronosyltransferase (AsUGT78D2) were identified and characterized on the transcriptional level and believed to be synthases of isorhamnetin and isorhamnetin-3-glycoside in sandrice, respectively. A trade-off between biosynthesis of rutin and isorhamnetin was found in the DL ecotype, which might be due to the metabolic flux redirection when facing environmental changes. This research provides valuable information for understanding flavonoid biosynthesis in sandrice at the molecular level and laid the foundation for precise development and utilization of this functional resource forage.
Collapse
Affiliation(s)
- Tingzhou Fang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Zhou
- Faculty of Environmental Science and Engineering, Shanxi Institute of Science and Technology, Jincheng, China
| | - Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xia Yan
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Marsgreen Biotech Jiangsu Co., Ltd., Haian, China
| | - Xiaoyue Yin
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xingke Fan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Pengshu Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqiu Liao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Shi
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxiao Chang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiao-Fei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Marsgreen Biotech Jiangsu Co., Ltd., Haian, China
| |
Collapse
|
12
|
Inflawell ® improves neutrophil-to-lymphocyte ratio and shortens hospitalization in patients with moderate COVID-19, in a randomized double-blind placebo-controlled clinical trial. Inflammopharmacology 2022; 30:465-475. [PMID: 35201518 PMCID: PMC8867130 DOI: 10.1007/s10787-022-00928-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/21/2022] [Indexed: 01/08/2023]
Abstract
Aims COVID-19 is a significant global threat to public health. Despite the availability of vaccines and anti-viral drugs, there is an urgent need for alternative treatments to help prevent and/or manage COVID-19 symptoms and the underlying dysregulated immune response. We hypothesized that administration of Inflawell® syrup, a Boswellia extract formulation enriched for boswellic acids (BAs), can reduce the excessive or persistent inflammation and thereby prevent disease progression. BAs are medicinally activated triterpenoids found in the resins of Boswellia spp., and possess an immense therapeutic potential due to their anti-inflammatory and immunoregulatory activities. We investigated the effect of Inflawell® syrup, on moderate COVID-19 patients along with the current standard of care treatment. Methods A randomized placebo-controlled double-blind clinical trial was conducted, following definitive confirmation of COVID-19. Forty-seven hospitalized patients with moderate COVID-19 were enrolled and received either the Inflawell® syrup or placebo. Clinical symptoms and markers of inflammation were evaluated at baseline and completion of the trial. Results Our clinical trial revealed an increase in the percentage of oxygen saturation level in patients that received the BAs compared to placebo (P < 0.0001). In addition, the average duration of hospitalization was significantly shorter in the BAs group compared with the placebo group (P < 0.04). Concomitantly, some improvement in the clinical symptoms including cough, dyspnea, myalgia, headache, and olfactory and gustatory dysfunction were detected in the BAs group. Hematologic findings showed a significant decrease in the percentage of neutrophils (P < 0.006) and neutrophil-to-lymphocyte ratio (NLR) levels (P < 0.003), associated with a significant increase in the percentage of lymphocytes in the BAs group compared with the placebo (P < 0.002). Additionally, a significant decrease in CRP, LDH, IL − 6 and TNF − α levels was detected in the BAs group. Following the intervention, fewer patients in the BAs group were PCR-positive for COVID-19 compared to placebo, though not statistically significant. Conclusion Overall, the treatment with Inflawell® resulted in shorter hospital stay, alleviation of COVID-19 clinical symptoms and decline in the level of pro-inflammatory cytokines. Trial registration The trial has been registered in https://www.irct.ir with unique identifier: IRCT20170315033086N10 (https://en.irct.ir/trial/51631). IRCT is a primary registry in the WHO registry network (https://www.who.int/clinical-trials-registry-platform/network/primary-registries).
Collapse
|
13
|
Jagielski P, Łuszczki E, Wnęk D, Micek A, Bolesławska I, Piórecka B, Kawalec P. Associations of Nutritional Behavior and Gut Microbiota with the Risk of COVID-19 in Healthy Young Adults in Poland. Nutrients 2022; 14:350. [PMID: 35057534 PMCID: PMC8779092 DOI: 10.3390/nu14020350] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
The numerous consequences of the coronavirus disease 2019 (COVID-19) pandemic in healthy young people and the lack of clarity as to the long-term disease outcomes have spurred the search for risk factors for SARS-CoV-2 infection. We aimed to evaluate the associations of nutritional behaviors, gut microbiota, and physical activity with the risk of COVID-19 in healthy young nonobese people. Data on body composition, anthropometric measurements, physical activity, dietary intake, and gut microbiota were obtained from 95 adults (mean age, 34.66 ± 5.76 years). A balanced diet rich in vegetables and fruit, including nuts, wholegrain cereal products, and legumes, covers the need for vitamins and minerals. Such a diet can be an effective measure to reduce the risk of COVID-19 in nonobese healthy physically active young people with normal immune function. People with balanced diet and an average daily consumption of >500 g of vegetables and fruit and >10 g of nuts had an 86% lower risk of COVID-19 compared with those whose diet was not balanced and who consumed lower amounts of these products. It is well documented that proper nutrition, physical activity, and maintenance of normal weight facilitate good health by ensuring optimal immune function. The beneficial effects of these interventions should be strongly emphasized during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Paweł Jagielski
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland; (B.P.); (P.K.)
| | - Edyta Łuszczki
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszów, Poland;
| | - Dominika Wnęk
- The Cracow’s Higher School of Health Promotion, 31-158 Krakow, Poland;
| | - Agnieszka Micek
- Department of Nursing Management and Epidemiology Nursing, Jagiellonian University Medical College, 31-007 Cracow, Poland;
| | - Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, 42 Marcelińska Str., 60-354 Poznań, Poland;
| | - Beata Piórecka
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland; (B.P.); (P.K.)
| | - Paweł Kawalec
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland; (B.P.); (P.K.)
| |
Collapse
|
14
|
I. Mohamed H, M. Fawzi E, Basit A, Kaleemullah, Lone R, R. Sofy M. Sorghum: Nutritional Factors, Bioactive Compounds, Pharmaceutical and Application in Food Systems: A Review. PHYTON 2022; 91:1303-1325. [DOI: 10.32604/phyton.2022.020642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/18/2022] [Indexed: 10/26/2023]
|
15
|
Bioactive Compounds and Biological Activities of Sorghum Grains. Foods 2021; 10:foods10112868. [PMID: 34829151 PMCID: PMC8618165 DOI: 10.3390/foods10112868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Sorghum is the fifth most commonly used cereal worldwide and is a rich source of many bioactive compounds. We summarized phenolic compounds and carotenoids, vitamin E, amines, and phytosterols in sorghum grains. Recently, with the development of detection technology, new bioactive compounds such as formononetin, glycitein, and ononin have been detected. In addition, multiple in vitro and in vivo studies have shown that sorghum grains have extensive bio-logical activities, such as antioxidative, anticancer, antidiabetic, antiinflammatory, and antiobesity properties. Finally, with the establishment of sorghum phenolic compounds database, the bound phenolics and their biological activities and the mechanisms of biological activities of sorghum bioactive compounds using clinical trials may be researched.
Collapse
|
16
|
Rizvi ZA, Tripathy MR, Sharma N, Goswami S, Srikanth N, Sastry JLN, Mani S, Surjit M, Awasthi A, Dikshit M. Effect of Prophylactic Use of Intranasal Oil Formulations in the Hamster Model of COVID-19. Front Pharmacol 2021; 12:746729. [PMID: 34721035 PMCID: PMC8551705 DOI: 10.3389/fphar.2021.746729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/10/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection initiates with viral entry in the upper respiratory tract, leading to coronavirus disease 2019 (COVID-19). Severe COVID-19 is characterized by pulmonary pathologies associated with respiratory failure. Thus, therapeutics aimed at inhibiting the entry of the virus or its internalization in the upper respiratory tract are of interest. Herein, we report the prophylactic application of two intranasal formulations provided by the National Medicinal Plant Board (NMPB), Anu oil and til tailya, in the hamster model of SARS-CoV-2 infection. Prophylactic intra-nasal instillation of these oil formulations exhibited reduced viral load in lungs and resulted in reduced body weight loss and lung-pneumonitis. In line with reduced viral load, histopathological analysis revealed a reduction in lung pathology in the Anu oil group as compared to the control infected group. However, the til tailya group did not show a significant reduction in lung pathology. Furthermore, molecular analysis using mRNA expression profiling indicated reduced expression of pro-inflammatory cytokine genes, including Th1 and Th17 cytokines for both the intranasal formulations as a result of decreased viral load. Together, the prophylactic intranasal application of Anu oil seems to be useful in limiting both viral load and severity in SARS-CoV2 infection in the hamster model.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Manas Ranjan Tripathy
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Nishant Sharma
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Sandeep Goswami
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - N Srikanth
- DG(I/C), Central Council for Ayurvedic Sciences, New Delhi, India
| | - J L N Sastry
- CEO-National Medicinal Plants Board, Ministry of AYUSH, New Delhi, India
| | - Shailendra Mani
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Milan Surjit
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Amit Awasthi
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| |
Collapse
|
17
|
Filip R, Anchidin-Norocel L, Gheorghita R, Savage WK, Dimian M. Changes in Dietary Patterns and Clinical Health Outcomes in Different Countries during the SARS-CoV-2 Pandemic. Nutrients 2021; 13:3612. [PMID: 34684615 PMCID: PMC8539259 DOI: 10.3390/nu13103612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to an excess in community mortality across the globe. We review recent evidence on the clinical pathology of COVID-19, comorbidity factors, immune response to SARS-CoV-2 infection, and factors influencing infection outcomes. The latter specifically includes diet and lifestyle factors during pandemic restrictions. We also cover the possibility of SARS-CoV-2 transmission through food products and the food chain, as well as virus persistence on different surfaces and in different environmental conditions, which were major public concerns during the initial days of the pandemic, but have since waned in public attention. We discuss useful measures to avoid the risk of SARS-CoV-2 spread through food, and approaches that may reduce the risk of contamination with the highly contagious virus. While hygienic protocols are required in food supply sectors, cleaning, disinfection, avoidance of cross-contamination across food categories, and foodstuffs at different stages of the manufacturing process are still particularly relevant because the virus persists at length on inert materials such as food packaging. Moreover, personal hygiene (frequent washing and disinfection), wearing gloves, and proper use of masks, clothes, and footwear dedicated to maintaining hygiene, provide on-site protections for food sector employees as well as supply chain intermediates and consumers. Finally, we emphasize the importance of following a healthy diet and maintaining a lifestyle that promotes physical well-being and supports healthy immune system function, especially when government movement restrictions ("lockdowns") are implemented.
Collapse
Affiliation(s)
- Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.F.); (R.G.); (W.K.S.)
- Regional County Emergency Hospital, 720224 Suceava, Romania
| | - Liliana Anchidin-Norocel
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.F.); (R.G.); (W.K.S.)
| | - Roxana Gheorghita
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.F.); (R.G.); (W.K.S.)
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Wesley K. Savage
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.F.); (R.G.); (W.K.S.)
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|