1
|
Banerjee D, Vydiam K, Vangala V, Mukherjee S. Advancement of Nanomaterials- and Biomaterials-Based Technologies for Wound Healing and Tissue Regenerative Applications. ACS APPLIED BIO MATERIALS 2025; 8:1877-1899. [PMID: 40019109 DOI: 10.1021/acsabm.5c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Patients and healthcare systems face significant social and financial challenges due to the increasing number of individuals with chronic external and internal wounds that fail to heal. The complexity of the healing process remains a serious health concern, despite the effectiveness of conventional wound dressings in promoting healing. Recent advancements in materials science and fabrication techniques have led to the development of innovative dressings that enhance wound healing. To further expedite the healing process, novel approaches such as nanoparticles, 3D-printed wound dressings, and biomolecule-infused dressings have emerged, along with cell-based methods. Additionally, gene therapy technologies are being harnessed to generate stem cell derivatives that are more functional, selective, and responsive than their natural counterparts. This review highlights the significant potential of biomaterials, nanoparticles, 3D bioprinting, and gene- and cell-based therapies in wound healing. However, it also underscores the necessity for further research to address the existing challenges and integrate these strategies into standard clinical practice.
Collapse
Affiliation(s)
- Durba Banerjee
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Kalyan Vydiam
- United Therapeutics, Manchester, New Hampshire 0310, United States
| | - Venugopal Vangala
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Sudip Mukherjee
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
2
|
Wolint P, Hofmann S, von Atzigen J, Böni R, Miescher I, Giovanoli P, Calcagni M, Emmert MY, Buschmann J. Standardization to Characterize the Complexity of Vessel Network Using the Aortic Ring Model. Int J Mol Sci 2024; 26:291. [PMID: 39796147 PMCID: PMC11719671 DOI: 10.3390/ijms26010291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/05/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Regeneration after ischemia requires to be promoted by (re)perfusion of the affected tissue, and, to date, there is no therapy that covers all needs. In treatment with mesenchymal stem cells (MSC), the secretome acts via paracrine mechanisms and has a positive influence on vascular regeneration via proangiogenic factors. A lack of standardization and the high complexity of vascular structures make it difficult to compare angiogenic readouts from different studies. This emphasizes the need for improved approaches and the introduction of an index in the preclinical setting. A characterization of human MSC secretomes obtained from one of the three formats-single cells, small, and large spheroids-was performed using the chicken aortic ring assay in combination with a modified angiogenic activity index (AAI) and an angiogenic profile. While the secretome of the small spheroid group showed an inhibitory effect on angiogenesis, the large spheroid group impressed with a fully pro-angiogenic response, and a higher AAI compared to the single cell group, underlying the suitability of these three-stem cell-derived secretomes with their distinct angiogenic properties to validate the AAI and the novel angiogenic profile established here.
Collapse
Affiliation(s)
- Petra Wolint
- Division of Surgical Research, University Hospital of Zurich, 8091 Zurich, Switzerland
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| | - Silvan Hofmann
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| | - Julia von Atzigen
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| | - Roland Böni
- White House Center for Liposuction, 8044 Zurich, Switzerland;
| | - Iris Miescher
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| | - Pietro Giovanoli
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, 8952 Zurich, Switzerland;
- Deutsches Herzzentrum der Charité (DHZC), Department of Cardiothoracic and Vascular Surgery, 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Johanna Buschmann
- Division of Surgical Research, University Hospital of Zurich, 8091 Zurich, Switzerland
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (S.H.); (J.v.A.); (I.M.); (P.G.); (M.C.)
| |
Collapse
|
3
|
Fu Z, Fan K, He X, Wang Q, Yuan J, Lim KS, Tang JN, Xie F, Cui X. Single-Atom-Based Nanoenzyme in Tissue Repair. ACS NANO 2024; 18:12639-12671. [PMID: 38718193 DOI: 10.1021/acsnano.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Since the discovery of ferromagnetic nanoparticles Fe3O4 that exhibit enzyme-like activity in 2007, the research on nanoenzymes has made significant progress. With the in-depth study of various nanoenzymes and the rapid development of related nanotechnology, nanoenzymes have emerged as a promising alternative to natural enzymes. Within nanozymes, there is a category of metal-based single-atom nanozymes that has been rapidly developed due to low cast, convenient preparation, long storage, less immunogenicity, and especially higher efficiency. More importantly, single-atom nanozymes possess the capacity to scavenge reactive oxygen species through various mechanisms, which is beneficial in the tissue repair process. Herein, this paper systemically highlights the types of metal single-atom nanozymes, their catalytic mechanisms, and their recent applications in tissue repair. The existing challenges are identified and the prospects of future research on nanozymes composed of metallic nanomaterials are proposed. We hope this review will illuminate the potential of single-atom nanozymes in tissue repair, encouraging their sequential clinical translation.
Collapse
Affiliation(s)
- Ziliang Fu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Kexin Fan
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xingjian He
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Yuan
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, Guangdong 518001, China
| | - Khoon S Lim
- School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Jun-Nan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fangxi Xie
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, Guangdong 519082, China
| | - Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
4
|
Rijo P, Abuamara TMM, Ali Lashin LS, Kamar SA, Isca VMS, Mohammed TS, Abdrabo MSM, Amin MA, Abd El Maksoud AI, Hassan A. Glycyrrhizic Acid Nanoparticles Subside the Activity of Methicillin-Resistant Staphylococcus aureus by Suppressing PBP2a. Pharmaceuticals (Basel) 2024; 17:589. [PMID: 38794159 PMCID: PMC11123903 DOI: 10.3390/ph17050589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) are classified as high-risk infections that can lead to death, particularly among older individuals. Nowadays, plant nanoparticles such as glycyrrhizic acid are recognized as efficient bactericides against a wide range of bacterial strains. Recently, scientists have shown interest in plant extract nanoparticles, derived from natural sources, which can be synthesized into nanomaterials. Interestingly, glycyrrhizic acid is rich in antioxidants as well as antibacterial agents, and it exhibits no adverse effects on normal cells. In this study, glycyrrhizic acid nanoparticles (GA-NPs) were synthesized using the hydrothermal method and characterized through physicochemical techniques such as UV-visible spectrometry, DLS, zeta potential, and TEM. The antimicrobial activity of GA-NPs was investigated through various methods, including MIC assays, anti-biofilm activity assays, ATPase activity assays, and kill-time assays. The expression levels of mecA, mecR1, blaR1, and blaZ genes were measured by quantitative RT-qPCR. Additionally, the presence of the penicillin-binding protein 2a (PBP2a) protein of S. aureus and MRSA was evaluated by a Western blot assay. The results emphasized the fabrication of GA nanoparticles in spherical shapes with a diameter in the range of 40-50 nm. The data show that GA nanoparticles exhibit great bactericidal effectiveness against S. aureus and MRSA. The treatment with GA-NPs remarkably reduces the expression levels of the mecA, mecR1, blaR1, and blaZ genes. PBP2a expression in MRSA was significantly reduced after treatment with GA-NPs. Overall, this study demonstrates that glycyrrhizic acid nanoparticles have potent antibacterial activity, particularly against MRSA. This research elucidates the inhibition mechanism of glycyrrhizic acid, which involves the suppressing of PBP2a expression. This work emphasizes the importance of utilizing plant nanoparticles as effective antimicrobial agents against a broad spectrum of bacteria.
Collapse
Affiliation(s)
- Patricia Rijo
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal;
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Tamer M. M. Abuamara
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Lashin Saad Ali Lashin
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Sherif A. Kamar
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Vera M. S. Isca
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal;
| | - Tahseen S. Mohammed
- Department of Public Health and Community Medicine, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt; (T.S.M.); (M.S.M.A.)
| | - Mohamed S. M. Abdrabo
- Department of Public Health and Community Medicine, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt; (T.S.M.); (M.S.M.A.)
| | - Mohamed A. Amin
- Department of Basic Medical Science, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan;
- Department of Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed I. Abd El Maksoud
- College of Biotechnology, Misr University of Science and Technology, Giza 12573, Egypt;
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| | - Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| |
Collapse
|
5
|
Hassan A, Mohsen R, Rezk A, Bangay G, Rijo P, Soliman MFM, G. A. Hablas M, Swidan KAK, Mohammed TS, Zoair MA, Mohamed AAK, Abdalrhman TI, Abdel-aleem Desoky AM, Mohamed DD, Mohamed DD, Abd El Maksoud AI, Mohamed AF. Enhancement of Vitamin C's Protective Effect against Thimerosal-Induced Neurotoxicity in the Cerebral Cortex of Wistar Albino Rats: An In Vivo and Computational Study. ACS OMEGA 2024; 9:8973-8984. [PMID: 38434836 PMCID: PMC10905602 DOI: 10.1021/acsomega.3c07239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/05/2024]
Abstract
Vitamin C was examined to ameliorate the neurotoxicity of thimerosal (THIM) in an animal model (Wistar albino rats). In our work, oxidative and antioxidative biomarkers such as SOD, LPO, and GSH were investigated at various doses of THIM with or without concurrent vitamin C administration. Furthermore, the adverse effects of THIM on hepatic tissue and cerebral cortex morphology were examined in the absence or presence of associated vitamin C administration. Also, we studied the effect of vitamin C on the metallothionein isoforms (MT-1, MT-2, and MT-3) in silico and in vivo using the RT-PCR assay. The results showed that the antioxidant biomarker was reduced as the THIM dose was raised and vice versa. THIM-associated vitamin C reduced the adverse effects of the THIM dose. The computation studies demonstrated that vitamin C has a lower ΔG of -4.9 kcal/mol compared to -4.1 kcal/mol for THIM to bind to the MT-2 protein, which demonstrated that vitamin C has a greater ability to bind with MT-2 than THIM. This is due to multiple hydrogen bonds that exist between vitamin C and MT-2 residues Lys31, Gln23, Cys24, and Cys29, and the sodium ion represents key stabilizing interactions. Hydrogen bonds involve electrostatic interactions between hydrogen atom donors (e.g., hydroxyl groups) and acceptors (e.g., carbonyl oxygens). The distances between heavy atoms are typically 2.5-3.5 Å. H-bonds provide directed, high-affinity interactions to anchor the ligand to the binding site. The five H-bonds formed by vitamin C allow it to form a stable complex with MT, while THIM can form two H-bonds with Gln23 and Cys24. This provides less stabilization in the binding pocket, contributing to the lower affinity compared to vitamin C. The histopathological morphologies in hepatic tissue displayed an expansion in the portal tract and the hepatocytes surrounding the portal tract, including apoptosis, binucleation, and karyomegaly. The histopathological morphologies in the brain tissue revealed a significant decrease in the number of Purkinje cells due to THIM toxicity. Interestingly, THIM toxicity was associated with hemorrhage and astrogliosis. Both intracellular and vasogenic edema appeared as the concentrations of THIM rose. Finally, vitamin C ameliorated the adverse effect on the cerebral cortex in Wistar albino rats.
Collapse
Affiliation(s)
- Amr Hassan
- Department
of Bioinformatics, Genetic Engineering and Biotechnology Research
Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| | - Reham Mohsen
- College
of Biotechnology, October University for Modern Science and Arts (MSA), University Giza, Giza 11456, Egypt
| | - Ahmed Rezk
- College
of Biotechnology, October University for Modern Science and Arts (MSA), University Giza, Giza 11456, Egypt
| | - Gabrielle Bangay
- CBIOS—Research
Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisboa 1749-024, Portugal
- Facultad
de Farmacia, Departamento de Ciencias Biomédicas (Área
de Farmacología; Nuevos agentes antitumorales, Acción
tóxica sobre células leucémicas), Universidad de Alcalá de Henares, Ctra. Madrid-Barcelona km. 33, Alcalá de Henares 600 28805, Madrid, Espana
| | - Patrícia Rijo
- CBIOS—Research
Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisboa 1749-024, Portugal
- Instituto
de Investigação do Medicamento (iMed.ULisboa), Faculdade
de Farmácia, Universidade de Lisboa, Lisbon 1749-024, Portugal
| | - Mona F. M. Soliman
- Department
of Histology and Cell Biology, Faculty Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed G. A. Hablas
- Department
of Histology and Cell Biology, Faculty of Medicine, Suez University, Suez 43221, Egypt
| | | | - Tahseen S. Mohammed
- Department
of Public Health and Community Medicine, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Mohammad A. Zoair
- Department
of Physiology, Faculty of Medicine, Al-Azhar
University, Cairo 11884, Egypt
| | - Abir A. Khalil Mohamed
- Department
of Zoology, Faculty of Science, Girls Branch, Al-Azhar University, Cairo 11884, Egypt
| | - Tamer I. Abdalrhman
- Department of Histology, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | | | - Dalia D. Mohamed
- Department of Industrial Biotechnology,
Genetic Engineering and Biotechnology
Research Institute (GEBRI), University of
Sadat City, Sadat 32897, Egypt
| | - Doaa D. Mohamed
- Department of Industrial Biotechnology,
Genetic Engineering and Biotechnology
Research Institute (GEBRI), University of
Sadat City, Sadat 32897, Egypt
| | - Ahmed I. Abd El Maksoud
- Department of Industrial Biotechnology,
Genetic Engineering and Biotechnology
Research Institute (GEBRI), University of
Sadat City, Sadat 32897, Egypt
| | - Aly F. Mohamed
- Holding
Company for Vaccine and Sera Production (VACSERA), Giza 22311, Egypt
| |
Collapse
|
6
|
Vagena IA, Gatou MA, Theocharous G, Pantelis P, Gazouli M, Pippa N, Gorgoulis VG, Pavlatou EA, Lagopati N. Functionalized ZnO-Based Nanocomposites for Diverse Biological Applications: Current Trends and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:397. [PMID: 38470728 PMCID: PMC10933906 DOI: 10.3390/nano14050397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The wide array of structures and characteristics found in ZnO-based nanostructures offers them a versatile range of uses. Over the past decade, significant attention has been drawn to the possible applications of these materials in the biomedical field, owing to their distinctive electronic, optical, catalytic, and antimicrobial attributes, alongside their exceptional biocompatibility and surface chemistry. With environmental degradation and an aging population contributing to escalating healthcare needs and costs, particularly in developing nations, there's a growing demand for more effective and affordable biomedical devices with innovative functionalities. This review delves into particular essential facets of different synthetic approaches (chemical and green) that contribute to the production of effective multifunctional nano-ZnO particles for biomedical applications. Outlining the conjugation of ZnO nanoparticles highlights the enhancement of biomedical capacity while lowering toxicity. Additionally, recent progress in the study of ZnO-based nano-biomaterials tailored for biomedical purposes is explored, including biosensing, bioimaging, tissue regeneration, drug delivery, as well as vaccines and immunotherapy. The final section focuses on nano-ZnO particles' toxicity mechanism with special emphasis to their neurotoxic potential, as well as the primary toxicity pathways, providing an overall review of the up-to-date development and future perspectives of nano-ZnO particles in the biomedicine field.
Collapse
Affiliation(s)
- Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
| | - Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece; (M.-A.G.); (E.A.P.)
| | - Giorgos Theocharous
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
| | - Pavlos Pantelis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National Kapodistrian University of Athens (NKUA), 15771 Athens, Greece;
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7YH, UK
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece; (M.-A.G.); (E.A.P.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
7
|
Hassan A, Rijo P, Abuamara TMM, Ali Lashin LS, Kamar SA, Bangay G, Al-Sawahli MM, Fouad MK, Zoair MA, Abdalrhman TI, Elebeedy D, Ibrahim IA, Mohamed AF, Abd El Maksoud AI. Synergistic Differential DNA Demethylation Activity of Danshensu ( Salvia miltiorrhiza) Associated with Different Probiotics in Nonalcoholic Fatty Liver Disease. Biomedicines 2024; 12:279. [PMID: 38397881 PMCID: PMC10886676 DOI: 10.3390/biomedicines12020279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major hepatic disorder occurring in non-alcohol-drinking individuals. Salvianic acid A or Danshensu (DSS, 3-(3, 4-dihydroxyphenyl)-(2R)-lactic acid), derived from the root of Danshen (Salvia miltiorrhiza), has demonstrated heart and liver protective properties. In this work, we investigated the antioxidant activity and hepatoprotective activity of Danshensu alone and in combination with different agents, such as probiotic bacteria (Lactobacillus casei and Lactobacillus acidophilus), against several assays. The inhibition mechanism of the methylation gene biomarkers, such as DNMT-1, MS, STAT-3, and TET-1, against DSS was evaluated by molecular docking and RT-PCR techniques. The physicochemical and pharmacokinetic ADMET properties of DSS were determined by SwissADME and pkCSM. The results indicated that all lipid blood test profiles, including cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), were reduced after the oral administration of Danshensu combined with probiotics (L. casei and L. acidophilus) that demonstrated good, efficient free radical scavenging activity, measured using anti-oxidant assays. ADMET and drug-likeness properties certify that the DSS could be utilized as a feasible drug since DSS showed satisfactory physicochemical and pharmacokinetic ADMET properties.
Collapse
Affiliation(s)
- Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| | - Patrícia Rijo
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal;
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Tamer M. M. Abuamara
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Lashin Saad Ali Lashin
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Sherif A. Kamar
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Gabrielle Bangay
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal;
- Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas), Ctra. Madrid-Barcelona km. 33,600, 28805 Alcalá de Henares, Madrid, España
| | - Majid Mohammed Al-Sawahli
- Department of Pharmaceutics, College of Pharmacy, The Islamic University, Najaf 54001, Iraq;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafr Elsheikh University, Kafr Elsheikh 33516, Egypt
| | - Marina K. Fouad
- College of Biotechnology, Misr University of Science and Technology, Giza 12573, Egypt; (M.K.F.); (D.E.); (A.I.A.E.M.)
| | - Mohammad A. Zoair
- Department of Physiology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt;
| | - Tamer I. Abdalrhman
- Department of Histology, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt;
| | - Dalia Elebeedy
- College of Biotechnology, Misr University of Science and Technology, Giza 12573, Egypt; (M.K.F.); (D.E.); (A.I.A.E.M.)
| | - Ibrahim A. Ibrahim
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt;
| | - Aly F. Mohamed
- Holding Company for Vaccine and Sera Production (VACSERA), Giza 22311, Egypt;
| | - Ahmed I. Abd El Maksoud
- College of Biotechnology, Misr University of Science and Technology, Giza 12573, Egypt; (M.K.F.); (D.E.); (A.I.A.E.M.)
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| |
Collapse
|
8
|
Khalil H, Nada AH, Mahrous H, Hassan A, Rijo P, Ibrahim IA, Mohamed DD, AL-Salmi FA, Mohamed DD, Elmaksoud AIA. Amelioration effect of 18β-Glycyrrhetinic acid on methylation inhibitors in hepatocarcinogenesis -induced by diethylnitrosamine. Front Immunol 2024; 14:1206990. [PMID: 38322013 PMCID: PMC10844948 DOI: 10.3389/fimmu.2023.1206990] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/27/2023] [Indexed: 02/08/2024] Open
Abstract
Aim suppression of methylation inhibitors (epigenetic genes) in hepatocarcinogenesis induced by diethylnitrosamine using glycyrrhetinic acid. Method In the current work, we investigated the effect of sole GA combined with different agents such as doxorubicin (DOX) or probiotic bacteria (Lactobacillus rhamanosus) against hepatocarcinogenesis induced by diethylnitrosamine to improve efficiency. The genomic DNA was isolated from rats' liver tissues to evaluate either methylation-sensitive or methylation-dependent resection enzymes. The methylation activity of the targeting genes DLC-1, TET-1, NF-kB, and STAT-3 was examined using specific primers and cleaved DNA products. Furthermore, flow cytometry was used to determine the protein expression profiles of DLC-1 and TET-1 in treated rats' liver tissue. Results Our results demonstrated the activity of GA to reduce the methylation activity in TET-1 and DLC-1 by 33.6% and 78%, respectively. As compared with the positive control. Furthermore, the association of GA with DOX avoided the methylation activity by 88% and 91% for TET-1 and DLC-1, respectively, as compared with the positive control. Similarly, the combined use of GA with probiotics suppressed the methylation activity in the TET-1 and DLC-1 genes by 75% and 81% for TET-1 and DLC-1, respectively. Also, GA and its combination with bacteria attenuated the adverse effect in hepatocarcinogenesis rats by altering potential methylomic genes such as NF-kb and STAT3 genes by 76% and 83%, respectively. Conclusion GA has an ameliorative effect against methylation inhibitors in hepatocellular carcinoma (HCC) by decreasing the methylation activity genes.
Collapse
Affiliation(s)
- Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Alaa H. Nada
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Hoda Mahrous
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Patricia Rijo
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Ibrahim A. Ibrahim
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Dalia D. Mohamed
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Fawziah A. AL-Salmi
- Department of Biology, Faculty of Sciences, Taif University, Taif, Saudi Arabia
| | - Doaa D. Mohamed
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Ahmed I. Abd Elmaksoud
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
- College of Biotechnology, Misr University of Science and Technology, Giza, Egypt
| |
Collapse
|
9
|
Bai L, Song P, Su J. Bioactive elements manipulate bone regeneration. BIOMATERIALS TRANSLATIONAL 2023; 4:248-269. [PMID: 38282709 PMCID: PMC10817798 DOI: 10.12336/biomatertransl.2023.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/30/2024]
Abstract
While bone tissue is known for its inherent regenerative abilities, various pathological conditions and trauma can disrupt its meticulously regulated processes of bone formation and resorption. Bone tissue engineering aims to replicate the extracellular matrix of bone tissue as well as the sophisticated biochemical mechanisms crucial for effective regeneration. Traditionally, the field has relied on external agents like growth factors and pharmaceuticals to modulate these processes. Although efficacious in certain scenarios, this strategy is compromised by limitations such as safety issues and the transient nature of the compound release and half-life. Conversely, bioactive elements such as zinc (Zn), magnesium (Mg) and silicon (Si), have garnered increasing interest for their therapeutic benefits, superior stability, and reduced biotic risks. Moreover, these elements are often incorporated into biomaterials that function as multifaceted bioactive components, facilitating bone regeneration via release on-demand. By elucidating the mechanistic roles and therapeutic efficacy of the bioactive elements, this review aims to establish bioactive elements as a robust and clinically viable strategy for advanced bone regeneration.
Collapse
Affiliation(s)
- Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Peiran Song
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
10
|
Dürig J, Calcagni M, Buschmann J. Transition metals in angiogenesis - A narrative review. Mater Today Bio 2023; 22:100757. [PMID: 37593220 PMCID: PMC10430620 DOI: 10.1016/j.mtbio.2023.100757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The aim of this paper is to offer a narrative review of the literature regarding the influence of transition metals on angiogenesis, excluding lanthanides and actinides. To our knowledge there are not any reviews up to date offering such a summary, which inclined us to write this paper. Angiogenesis describes the process of blood vessel formation, which is an essential requirement for human growth and development. When the complex interplay between pro- and antiangiogenic mediators falls out of balance, angiogenesis can quickly become harmful. As it is so fundamental, both its inhibition and enhancement take part in various diseases, making it a target for therapeutic treatments. Current methods come with limitations, therefore, novel agents are constantly being researched, with metal agents offering promising results. Various transition metals have already been investigated in-depth, with studies indicating both pro- and antiangiogenic properties, respectively. The transition metals are being applied in various formulations, such as nanoparticles, complexes, or scaffold materials. Albeit the increasing attention this field is receiving, there remain many unanswered questions, mostly regarding the molecular mechanisms behind the observed effects. Notably, approximately half of all the transition metals have not yet been investigated regarding potential angiogenic effects. Considering the promising results which have already been established, it should be of great interest to begin investigating the remaining elements whilst also further analyzing the established effects.
Collapse
Affiliation(s)
- Johannes Dürig
- University of Zürich, Faculty of Medicine, Pestalozzistrasse 3, 8032, Zurich, Switzerland
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Maurizio Calcagni
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Johanna Buschmann
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| |
Collapse
|
11
|
Yoshida YG, Yan S, Xu H, Yang J. Novel Metal Nanomaterials to Promote Angiogenesis in Tissue Regeneration. ENGINEERED REGENERATION 2023; 4:265-276. [PMID: 37234753 PMCID: PMC10207714 DOI: 10.1016/j.engreg.2023.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Angiogenesis-the formation of new blood vessels from existing blood vessels-has drawn significant attention in medical research. New techniques have been developed to control proangiogenic factors to obtain desired effects. Two important research areas are 1) understanding cellular mechanisms and signaling pathways involved in angiogenesis and 2) discovering new biomaterials and nanomaterials with proangiogenic effects. This paper reviews recent developments in controlling angiogenesis in the context of regenerative medicine and wound healing. We focus on novel proangiogenic materials that will advance the field of regenerative medicine. Specifically, we mainly focus on metal nanomaterials. We also discuss novel technologies developed to carry these proangiogenic inorganic molecules efficiently to target sites. We offer a comprehensive overview by combining existing knowledge regarding metal nanomaterials with novel developments that are still being refined to identify new nanomaterials.
Collapse
Affiliation(s)
- Yuki G. Yoshida
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
12
|
Castro JI, Araujo-Rodríguez DG, Valencia-Llano CH, López Tenorio D, Saavedra M, Zapata PA, Grande-Tovar CD. Biocompatibility Assessment of Polycaprolactone/Polylactic Acid/Zinc Oxide Nanoparticle Composites under In Vivo Conditions for Biomedical Applications. Pharmaceutics 2023; 15:2196. [PMID: 37765166 PMCID: PMC10535598 DOI: 10.3390/pharmaceutics15092196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The increasing demand for non-invasive biocompatible materials in biomedical applications, driven by accidents and diseases like cancer, has led to the development of sustainable biomaterials. Here, we report the synthesis of four block formulations using polycaprolactone (PCL), polylactic acid (PLA), and zinc oxide nanoparticles (ZnO-NPs) for subdermal tissue regeneration. Characterization by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed the composition of the composites. Additionally, the interaction of ZnO-NPs mainly occurred with the C=O groups of PCL occurring at 1724 cm-1, which disappears for F4, as evidenced in the FT-IR analysis. Likewise, this interaction evidenced the decrease in the crystallinity of the composites as they act as crosslinking points between the polymer backbones, inducing gaps between them and weakening the strength of the intermolecular bonds. Thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyses confirmed that the ZnO-NPs bind to the carbonyl groups of the polymer, acting as weak points in the polymer backbone from where the different fragmentations occur. Scanning electron microscopy (SEM) showed that the increase in ZnO-NPs facilitated a more compact surface due to the excellent dispersion and homogeneous accumulation between the polymeric chains, facilitating this morphology. The in vivo studies using the nanocomposites demonstrated the degradation/resorption of the blocks in a ZnO-NP-dependant mode. After degradation, collagen fibers (Type I), blood vessels, and inflammatory cells continue the resorption of the implanted material. The results reported here demonstrate the relevance and potential impact of the ZnO-NP-based scaffolds in soft tissue regeneration.
Collapse
Affiliation(s)
- Jorge Iván Castro
- Laboratorio SIMERQO, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia;
| | - Daniela G. Araujo-Rodríguez
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| | - Carlos Humberto Valencia-Llano
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (C.H.V.-L.); (D.L.T.)
| | - Diego López Tenorio
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (C.H.V.-L.); (D.L.T.)
| | - Marcela Saavedra
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile; (M.S.); (P.A.Z.)
| | - Paula A. Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile; (M.S.); (P.A.Z.)
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| |
Collapse
|
13
|
Cui S, Yang F, Yu D, Shi C, Zhao D, Chen L, Chen J. Double Network Physical Crosslinked Hydrogel for Healing Skin Wounds: New Formulation Based on Polysaccharides and Zn 2. Int J Mol Sci 2023; 24:13042. [PMID: 37685860 PMCID: PMC10488206 DOI: 10.3390/ijms241713042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Developing convenient, efficient, and natural wound dressings remain the foremost strategy for treating skin wounds. Thus, we innovatively combined the semi-dissolved acidified sol-gel conversion method with the internal gelation method to fabricate SA (sodium alginate)/CS (chitosan)/Zn2+ physically cross-linked double network hydrogel and named it SA/CS/Zn2+ PDH. The characterization results demonstrated that increased Zn2+ content led to hydrogels with improved physical and chemical properties, such as rheology, water retention, and swelling capacity. Moreover, the hydrogels exhibited favorable antibacterial properties and biocompatibility. Notably, the establishment of an in vitro pro-healing wound model further confirmed that the hydrogel had a superior ability to repair wounds and promote skin regeneration. In future, as a natural biomaterial with antimicrobial properties, it has the potential to promote wound healing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China; (S.C.); (F.Y.); (D.Y.); (C.S.); (D.Z.); (L.C.)
| |
Collapse
|
14
|
Bosch-Rué È, Díez-Tercero L, Buitrago JO, Castro E, Pérez RA. Angiogenic and immunomodulation role of ions for initial stages of bone tissue regeneration. Acta Biomater 2023; 166:14-41. [PMID: 37302735 DOI: 10.1016/j.actbio.2023.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
It is widely known that bone has intrinsic capacity to self-regenerate after injury. However, the physiological regeneration process can be impaired when there is an extensive damage. One of the main reasons is due to the inability to establish a new vascular network that ensures oxygen and nutrient diffusion, leading to a necrotic core and non-junction of bone. Initially, bone tissue engineering (BTE) emerged to use inert biomaterials to just fill bone defects, but it eventually evolved to mimic bone extracellular matrix and even stimulate bone physiological regeneration process. In this regard, the stimulation of osteogenesis has gained a lot of attention especially in the proper stimulation of angiogenesis, being critical to achieve a successful osteogenesis for bone regeneration. Besides, the immunomodulation of a pro-inflammatory environment towards an anti-inflammatory one upon scaffold implantation has been considered another key process for a proper tissue restoration. To stimulate these phases, growth factors and cytokines have been extensively used. Nonetheless, they present some drawbacks such as low stability and safety concerns. Alternatively, the use of inorganic ions has attracted higher attention due to their higher stability and therapeutic effects with low side effects. This review will first focus in giving fundamental aspects of initial bone regeneration phases, focusing mainly on inflammatory and angiogenic ones. Then, it will describe the role of different inorganic ions in modulating the immune response upon biomaterial implantation towards a restorative environment and their ability to stimulate angiogenic response for a proper scaffold vascularization and successful bone tissue restoration. STATEMENT OF SIGNIFICANCE: The impairment of bone tissue regeneration when there is excessive damage has led to different tissue engineered strategies to promote bone healing. Significant importance has been given in the immunomodulation towards an anti-inflammatory environment together with proper angiogenesis stimulation in order to achieve successful bone regeneration rather than stimulating only the osteogenic differentiation. Ions have been considered potential candidates to stimulate these events due to their high stability and therapeutic effects with low side effects compared to growth factors. However, up to now, no review has been published assembling all this information together, describing individual effects of ions on immunomodulation and angiogenic stimulation, as well as their multifunctionality or synergistic effects when combined together.
Collapse
Affiliation(s)
- Èlia Bosch-Rué
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Leire Díez-Tercero
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Jenifer Olmos Buitrago
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Emilio Castro
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain
| | - Roman A Pérez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, Barcelona 08195, Spain; Basic Sciences Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Barcelona 08195, Spain.
| |
Collapse
|
15
|
Hassan A, AL-Salmi FA, Saleh MA, Sabatier JM, Alatawi FA, Alenezi MA, Albalwe FM, Meteq R. Albalawi H, Darwish DBE, Sharaf EM. Inhibition Mechanism of Methicillin-Resistant Staphylococcus aureus by Zinc Oxide Nanorods via Suppresses Penicillin-Binding Protein 2a. ACS OMEGA 2023; 8:9969-9977. [PMID: 36969461 PMCID: PMC10034842 DOI: 10.1021/acsomega.2c07142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes life-threatening infections. Zinc oxide is well known as an effective antibacterial drug against many bacterial strains. We investigated the performance of zinc oxide nanorods synthesized by Albmiun as a biotemplate as an antibacterial drug in this study; the fabrication of zinc oxide nanorods was synthesized by sol-gel methods. We performed physicochemical characterization of zinc oxide nanorods by physiochemical techniques such as FTIR spectroscopy, X-ray diffraction, and TEM and investigation of their antimicrobial toxicity efficiency by MIC, ATPase activity assay, anti-biofilm activity, and kill time assays, as well as the mecA, mecR1, blaR1, blaZ, and biofilm genes (ica A, ica D, and fnb A) by using a quantitative RT-PCR assay and the penicillin-binding protein 2a (PBP2a) level of MRSA by using a Western blot. The data confirmed the fabrication of rod-shaped zinc oxide nanorods with a diameter in the range of 50 nm, which emphasized the formation of zinc oxide nanoparticles with regular shapes. The results show that zinc oxide nanorods inhibited methicillin-resistant S. aureus effectively. The MIC value was 23 μg/mL. The time kill of ZnO-NRs against MRSA was achieved after 2 h of incubation at 4MIC (92 μg/mL) and after 3 h of incubation at 2MIC (46 μg/mL), respectively. The lowest concentration of zinc oxide nanorods with over 75% biofilm killing in all strains tested was 32 μg/mL. Also, we examined the influence of the zinc oxide nanorods on MRSA by analyzing mecA, mecR1, blaR1, and blaZ by using a quantitative RT-PCR assay. The data obtained revealed that the presence of 2× MIC (46 μg/mL) of ZnO-NRs reduced the transcriptional levels of blaZ, blaR1, mecA, and mecR1 by 3.4-fold, 3.6-fold, 4-fold, and 3.8-fold, respectively. Furthermore, the gene expression of biofilm encoding genes (ica A, ica B, ica D, and fnb A) was tested using quantitative real-time reverse transcriptase-polymerase chain reaction (rt-PCR). The results showed that the presence of 2× MIC (46 μg/mL) of ZnO-NRs reduced the transcriptional levels of ica A, ica B, ica D, and fnb A. Also, the PBP2a level was markedly reduced after treatment with ZnO-NRs.
Collapse
Affiliation(s)
- Amr Hassan
- Department
of Bioinformatics, Genetic Engineering and Biotechnology Research
Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| | - Fawziah A. AL-Salmi
- Department
of Biology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Muneera A. Saleh
- Department
of Biology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Jean-Marc Sabatier
- Institute
de Neurophysiopathologie (INP), Aix-Marseille
Université, Marseille 13005, France
| | - Fuad A. Alatawi
- Department
of Biology, Faculty of Science, University
of Tabuk, Tabuk 71421, Saudi Arabia
| | | | - Fauzeya M. Albalwe
- Department
of Biology, Faculty of Science, University
of Tabuk, Tabuk 71421, Saudi Arabia
| | | | - Doaa Bahaa Eldin Darwish
- Department
of Biology, Faculty of Science, University
of Tabuk, Tabuk 71421, Saudi Arabia
- Botany Department,
Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Eman M. Sharaf
- Department
of Bacteriology, Immunology, and Mycology, Animal Health Research Institute (AHRI), Shebin El Kom 11564, Egypt
| |
Collapse
|
16
|
Alhazmi NM, Sharaf EM. Fungicidal Activity of Zinc Oxide Nanoparticles against Azole-Resistant Aspergillus flavus Isolated from Yellow and White Maize. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020711. [PMID: 36677769 PMCID: PMC9865401 DOI: 10.3390/molecules28020711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
The risk of resistance development and adverse effects on human health and the environment has increased in the last decade. Furthermore, many antifungal agents fail to inhibit the pathogenesis of azole-resistant Aspergillus flavus. In this report, we isolated and identified azole-resistant A. flavus isolates from two sources of maize (white and yellow maize). The susceptibilities of Aspergillus flavus isolates were investigated by conventional antifungals such as Terbinfine, Fluconazole, Ketoconazole, Voricazole, Amphotericin, and Nystatin. Then zinc oxide nanoparticles associated with Chlorella vulgaris, which are synthesized by using the precipitation method, were examined against isolated fungi. The results showed that twelve species of white corn were isolated out of fifty isolates, while the number of isolates from the yellow corn source was only four. Interestingly, the following antifungals have an impact effect against azole-resistant A. flavus isolates: the inhibition zones of ketoconazole, voricazole, and terbinafine were 40 mm, 20 mm, and 12 mm, respectively, while the remaining antifungal agents have no effect. Similarly, the inhibition zones of the following antifungal agents were as follows: 41 mm for Terbinfine, 13 mm for Voricazole, and 11 mm for Ketoconazole against Aspergillus flavus that was isolated from yellow corn. The physiochemical characterization of zinc oxide nanoparticles provides evidence that ZnO-NPs associate with Chlorella vulgaris and have been fabricated by the precipitation method with a diameter of 25 nm. The zinc oxide nanoparticle was then used to isolate azole-resistant A. flavus, and the results show that ZnO-NPs have an effect on azole-resistant A. flavus isolation. The inhibition zone of zinc oxide nanoparticles against A. flavus (that was isolated from white corn) was 50 mm with an MIC of 50 mg/mL, while the inhibition zone of zinc oxide nanoparticles against Azole-resistant A. flavus isolated from yellow corn was 14 nm with an MIC of 25 mg/mL, which indicated that zinc oxide nanoparticles gave a better result against Azole-resistant A. flavus isolated from maize.
Collapse
Affiliation(s)
- Nuha M. Alhazmi
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Eman M. Sharaf
- Department of Bacteriology, Immunology, and Mycology, Animal Health Research Institute (AHRI), Shebin El Kom 32511, Egypt
- Correspondence:
| |
Collapse
|
17
|
Alhazmi NM. Fungicidal Activity of Silver and Silica Nanoparticles against Aspergillus sydowii Isolated from the Soil in Western Saudi Arabia. Microorganisms 2022; 11:microorganisms11010086. [PMID: 36677378 PMCID: PMC9861402 DOI: 10.3390/microorganisms11010086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Aspergillus sydowii is a mesophilic soil saprobe that is a food contaminant as well as a human pathogen in immune-compromised patients. The biological fabrication of silica and silver nanoparticles provides advancements over the chemical approach, as it is eco-friendly and cost-effective. In the present study, Aspergillus sydowii isolates were collected from the soil fields of six different sites in the western area of Saudi Arabia and then identified using the PCR technique following sequencing analysis by BLAST and phylogenetic analysis. Then, applied silica and silver nanoparticles were synthesized by biological methods, using Aspergillus niger as a reducer. Silver and silica nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The antifungal activity of silver and silica nanoparticles against Aspergillus sydowii isolates was evaluated using the disc diffusion method and the minimum inhibitory concentration (MIC). The physiochemical results emphasized the fabrication of silver and silica nanoparticles in spherical shapes with a diameter in the range of 15 and 40 nm, respectively, without any aggregation. MIC of Ag-NPs and Si-NPs against Aspergillus sydowii isolates were 31.25 and 62.5 µg/mL, respectively. Finally, the aim of the study is the use of silver as well as silica nanoparticles as antifungal agents against Aspergillus sydowii.
Collapse
Affiliation(s)
- Nuha M Alhazmi
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| |
Collapse
|
18
|
Zhang Z, Li W, Chang D, Wei Z, Wang E, Yu J, Xu Y, Que Y, Chen Y, Fan C, Ma B, Zhou Y, Huan Z, Yang C, Guo F, Chang J. A combination therapy for androgenic alopecia based on quercetin and zinc/copper dual-doped mesoporous silica nanocomposite microneedle patch. Bioact Mater 2022; 24:81-95. [PMID: 36582348 PMCID: PMC9772573 DOI: 10.1016/j.bioactmat.2022.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
A nanocomposite microneedle (ZCQ/MN) patch containing copper/zinc dual-doped mesoporous silica nanoparticles loaded with quercetin (ZCQ) was developed as a combination therapy for androgenic alopecia (AGA). The degradable microneedle gradually dissolves after penetration into the skin and releases the ZCQ nanoparticles. ZCQ nanoparticles release quercetin (Qu), copper (Cu2+) and zinc ions (Zn2+) subcutaneously to synergistically promote hair follicle regeneration. The mechanism of promoting hair follicle regeneration mainly includes the regulation of the main pathophysiological phenomena of AGA such as inhibition of dihydrotestosterone, inhibition of inflammation, promotion of angiogenesis and activation of hair follicle stem cells by the combination of Cu2+ and Zn2+ ions and Qu. This study demonstrates that the systematic intervention targeting different pathophysiological links of AGA by the combination of organic drug and bioactive metal ions is an effective treatment strategy for hair loss, which provides a theoretical basis for development of biomaterial based anti-hair loss therapy.
Collapse
Affiliation(s)
- Zhaowenbin Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wenbo Li
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200025, PR China
| | - Di Chang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Fudan University, Shanghai, 200433, PR China
| | - Ziqin Wei
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Endian Wang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jing Yu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuze Xu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yumei Que
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China
| | - Yanxin Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China
| | - Chen Fan
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China
| | - Bing Ma
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yanling Zhou
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhiguang Huan
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chen Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China,Corresponding author.
| | - Feng Guo
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200025, PR China,Corresponding author.
| | - Jiang Chang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China,Corresponding author. State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.
| |
Collapse
|
19
|
Hoseinzadeh A, Ghoddusi Johari H, Anbardar MH, Tayebi L, Vafa E, Abbasi M, Vaez A, Golchin A, Amani AM, Jangjou A. Effective treatment of intractable diseases using nanoparticles to interfere with vascular supply and angiogenic process. Eur J Med Res 2022; 27:232. [PMID: 36333816 PMCID: PMC9636835 DOI: 10.1186/s40001-022-00833-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is a vital biological process involving blood vessels forming from pre-existing vascular systems. This process contributes to various physiological activities, including embryonic development, hair growth, ovulation, menstruation, and the repair and regeneration of damaged tissue. On the other hand, it is essential in treating a wide range of pathological diseases, such as cardiovascular and ischemic diseases, rheumatoid arthritis, malignancies, ophthalmic and retinal diseases, and other chronic conditions. These diseases and disorders are frequently treated by regulating angiogenesis by utilizing a variety of pro-angiogenic or anti-angiogenic agents or molecules by stimulating or suppressing this complicated process, respectively. Nevertheless, many traditional angiogenic therapy techniques suffer from a lack of ability to achieve the intended therapeutic impact because of various constraints. These disadvantages include limited bioavailability, drug resistance, fast elimination, increased price, nonspecificity, and adverse effects. As a result, it is an excellent time for developing various pro- and anti-angiogenic substances that might circumvent the abovementioned restrictions, followed by their efficient use in treating disorders associated with angiogenesis. In recent years, significant progress has been made in different fields of medicine and biology, including therapeutic angiogenesis. Around the world, a multitude of research groups investigated several inorganic or organic nanoparticles (NPs) that had the potential to effectively modify the angiogenesis processes by either enhancing or suppressing the process. Many studies into the processes behind NP-mediated angiogenesis are well described. In this article, we also cover the application of NPs to encourage tissue vascularization as well as their angiogenic and anti-angiogenic effects in the treatment of several disorders, including bone regeneration, peripheral vascular disease, diabetic retinopathy, ischemic stroke, rheumatoid arthritis, post-ischemic cardiovascular injury, age-related macular degeneration, diabetic retinopathy, gene delivery-based angiogenic therapy, protein delivery-based angiogenic therapy, stem cell angiogenic therapy, and diabetic retinopathy, cancer that may benefit from the behavior of the nanostructures in the vascular system throughout the body. In addition, the accompanying difficulties and potential future applications of NPs in treating angiogenesis-related diseases and antiangiogenic therapies are discussed.
Collapse
Affiliation(s)
- Ahmad Hoseinzadeh
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Ghoddusi Johari
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Golchin
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
20
|
Si Y, Liu H, Yu H, Jiang X, Sun D. MOF-derived CuO@ZnO modified titanium implant for synergistic antibacterial ability, osteogenesis and angiogenesis. Colloids Surf B Biointerfaces 2022; 219:112840. [PMID: 36113223 DOI: 10.1016/j.colsurfb.2022.112840] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 12/17/2022]
Abstract
Surface modification of titanium implants with antibacterial, osteogenic and even angiogenic capabilities are essential to enhance their clinical applicability. Herein, metal-organic framework (MOF) derived CuO@ZnO composite was grafted onto the polydopamine (PDA) modified titanium alloy to achieve vascularized bone regeneration. The CuO@ZnO-coated titanium effectively inhibits the formation of bacterial biofilms and the sterilization rate of Staphylococcus aureus (S. aureus) reaches 99%. Benefitting from the intrinsic porous architecture of MOFs, the Zn2+ and Cu2+ could be controllably released to facilitate the production of excess intracellular reactive oxygen species (ROS) inside the bacteria, which ensures the excellent antibacterial performance of the composite coating. The CuO@ZnO-coated titanium also exhibits good cytocompatibility, effectively promotes the adhesion and proliferation of the human bone marrow mesenchymal stem cells (hBMSCs) and reduces the level of the cell apoptosis. The up-regulated expression of the osteogenesis-related genes and the superior extracellular matrix mineralization reveals that the CuO@ZnO coating possesses fantastic osteoinductive properties. In addition, the transwell and tube formation assays of the human umbilical vein endothelial cells (HUVECs) suggest the superior angiogenesis ability of the CuO@ZnO-coated titanium. The released Cu2+ stimulated the angiogenesis of the HUVECs in vitro by up-regulating the expression of the vascular endothelial growth factor (VEGF). These findings will provide new insight into the development of multifunctional titanium implants for clinical applications.
Collapse
Affiliation(s)
- Yunhui Si
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Huanyao Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Hongying Yu
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, PR China; Innovation Group of Marine Engineering Materials and Corrosion Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, PR China.
| | - Xuzhou Jiang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China; Nanotechnology Research Center, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Dongbai Sun
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China; National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, PR China; Innovation Group of Marine Engineering Materials and Corrosion Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, PR China.
| |
Collapse
|
21
|
Hassan A, Al-Salmi FA, Abuamara TMM, Matar ER, Amer ME, Fayed EMM, Hablas MGA, Mohammed TS, Ali HE, Abd EL-fattah FM, Abd Elhay WM, Zoair MA, Mohamed AF, Sharaf EM, Dessoky ES, Alharthi F, Althagafi HAE, Abd El Maksoud AI. Ultrastructural analysis of zinc oxide nanospheres enhances anti-tumor efficacy against Hepatoma. Front Oncol 2022; 12:933750. [PMID: 36457501 PMCID: PMC9706544 DOI: 10.3389/fonc.2022.933750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/12/2022] [Indexed: 09/01/2023] Open
Abstract
Zinc oxide nanomaterial is a potential material in the field of cancer therapy. In this study, zinc oxide nanospheres (ZnO-NS) were synthesized by Sol-gel method using yeast extract as a non-toxic bio-template and investigated their physicochemical properties through various techniques such as FTIR, XR, DLS, and TEM. Furthermore, free zinc ions released from the zinc oxide nanosphere suspended medium were evaluated by using the ICP-AS technique. Therefore, the cytotoxicity of ZnO nanospheres and released Zn ions on both HuH7 and Vero cells was studied using the MTT assay. The data demonstrated that the effectiveness of ZnO nanospheres on HuH7 was better than free Zn ions. Similarly, ZnO-Ns were significantly more toxic to HuH7 cell lines than Vero cells in a concentration-dependent manner. The cell cycle of ZnO-Ns against Huh7 and Vero cell lines was arrested at G2/M. Also, the apoptosis assay using Annexin-V/PI showed that apoptosis of HuH7 and Vero cell lines by ZnO nanospheres was concentration and time-dependent. Caspase 3 assay results showed that the apoptosis mechanism may be intrinsic and extrinsic pathways. The mechanism of apoptosis was determined by applying the RT-PCR technique. The results revealed significantly up-regulated Bax, P53, and Cytochrome C, while the Bcl2 results displayed significant down-regulation and the western blot data confirmed the RT-PCR data. There is oxidative stress of the ZnO nanospheres and free Zn+2 ions. Results indicated that the ZnO nanospheres and free Zn+2 ions induced oxidative stress through increasing reactive oxygen species (ROS) and lipid peroxidation. The morphology of the HuH7 cell line after exposure to ZnO nanospheres at different time intervals revealed the presence of the chromatin condensation of the nuclear periphery fragmentation. Interestingly, the appearance of canonical ultrastructure features of apoptotic morphology of Huh7, Furthermore, many vacuoles existed in the cytoplasm, the majority of which were lipid droplets, which were like foamy cells. Also, there are vesicles intact with membranes that are recognized as swollen mitochondria.
Collapse
Affiliation(s)
- Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat, Egypt
| | - Fawziah A. Al-Salmi
- Biology Department, College of Sciences, Taif University, Taif, Saudi Arabia
| | | | - Emadeldin R. Matar
- Departments of Pathology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed E. Amer
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ebrahim M. M. Fayed
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Tahseen S. Mohammed
- Department of Public Health and Community Medicine, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Haytham E. Ali
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Fayez M. Abd EL-fattah
- Department of Anatomy and Embryology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Wagih M. Abd Elhay
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohammad A. Zoair
- Department of Physiology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Aly F. Mohamed
- Research and development department, Egyptian Organization for Biological Products and Vaccines [Holding Company for Vaccine and Sera Production (VACSERA)], Giza, Egypt
| | - Eman M. Sharaf
- Department of Bacteriology, Immunology, and Mycology, Animal Health Research Institute (AHRI), Shebin El Kom, Egypt
| | | | - Fahad Alharthi
- Biology Department, College of Sciences, Taif University, Taif, Saudi Arabia
| | | | - Ahmed I. Abd El Maksoud
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat, Egypt
| |
Collapse
|
22
|
Sharaf EM, Hassan A, AL-Salmi FA, Albalwe FM, Albalawi HMR, Darwish DB, Fayad E. Synergistic antibacterial activity of compact silver/magnetite core-shell nanoparticles core shell against Gram-negative foodborne pathogens. Front Microbiol 2022; 13:929491. [PMID: 36118244 PMCID: PMC9478199 DOI: 10.3389/fmicb.2022.929491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The development of innovative antibacterial drugs against foodborne pathogens has led to an interest in novel materials such as nanomaterials. The unique features of nanomaterial qualify it for use as an antibacterial treatment. Noble metals and metal oxide nanoparticles, such as silver and magnetite nanoparticles, have been shown to be effective antibacterial medications against a range of microorganisms. In this work, Ag@Fe3O4 -NPs were fabricated by using a wet chemical reduction and modified co-precipitation techniques. The antibacterial efficiency of the Ag/Fe3O4 core shell nanoparticles was investigated by applying various techniques, such as the Kirby–Bauer Disk Diffusion test, minimum inhibitory concentration (MIC) and bactericidal concentration (MBC), Colony Forming Unit (CFU), and kill time assay. The toxicity mechanism of Ag@Fe3O4 -NPs against Salmonella typhimurium and Escherichia coli was studied by apoptosis and reactive oxygen species (ROS) assays. The data revealed that a cubic core was surrounded by a silver shell, which indicated the regular morphology of silver magnetite core shell nanoparticles without any aggregation. Furthermore, Ag@Fe3O4 -NPs is more toxic against S. typhimurium and E. coli than Ag-NPs and Fe3O4 NPs. The MIC values for Ag/Fe3O4 NPs against S. typhimurium and E. coli were 3.1 and 5.4 μg/ml, respectively, whereas the MIC values for Ag-NPs and MNPs against S. typhimurium and E. coli were 4.1 and 8.2 μg/ml for Ag-NPs and 6.9 and 10.3 μg/ml for MNPs. The results showed the ability of Ag@Fe3O4 -NPs to induce apoptosis by generating ROS. Also, the ability of Ag@Fe3O4 -NPs to liberate free Ag+ and generate ROS via the Haber-Weiss cycle may be a plausible mechanism to explain the toxicity of Ag@Fe3O4 -NPs - NPs.
Collapse
Affiliation(s)
- Eman M. Sharaf
- Department of Bacteriology, Immunology, and Mycology, Animal Health Research Institute (AHRI), Shebin El Kom, Egypt
| | - Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat, Egypt
- *Correspondence: Amr Hassan,
| | - Fawziah A. AL-Salmi
- Department of Biology, Faculty of Sciences, Taif University, Taif, Saudi Arabia
| | - Fauzeya M. Albalwe
- Department of Biology, Faculty of Science, Tabuk University, Tabuk, Saudi Arabia
| | | | - Doaa B. Darwish
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Eman Fayad
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
23
|
Wojcik M, Kazimierczak P, Belcarz A, Wilczynska A, Vivcharenko V, Pajchel L, Adaszek L, Przekora A. Biocompatible curdlan-based biomaterials loaded with gentamicin and Zn-doped nano-hydroxyapatite as promising dressing materials for the treatment of infected wounds and prevention of surgical site infections. BIOMATERIALS ADVANCES 2022; 139:213006. [PMID: 35882153 DOI: 10.1016/j.bioadv.2022.213006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
A topical application of antibiotic-loaded wound dressings is recommended only for chronically infected wounds with poor vascularization. Thus, more often dressing materials loaded with antibacterial metal ions are produced. In turn, gentamicin sponges are commonly used to prevent surgical site infections. The aim of this study was to produce curdlan-based biomaterials enriched with gentamicin and zinc (Zn)-doped nano-hydroxyapatite to prevent wound and surgical site infections. Developed biomaterials were subjected to basic microstructural characterization, cytotoxicity test against human skin fibroblasts (BJ cell line), and comprehensive microbiological experiments using Staphylococcus aureus and Pseudomonas aeruginosa strains. To evaluate the in vivo healing capacity of the developed biomaterials, severely infected chronic wound in a veterinary patient was treated with the use of gentamicin-loaded dressing. Fabricated biomaterials were characterized by a highly porous microstructure with high plasma absorption capacity (approx. 7 mL/g for Zn-loaded biomaterial and 13 mL/g for gentamicin-enriched dressing) and optimal water vapor transmission rate (approx. 1700 g/m2/day). Due to the presence of bioceramics, material containing Zn showed slightly higher compressive strength (0.37 MPa) and Young's modulus (3.33 MPa) values compared to gentamicin-loaded biomaterial (0.12 MPa and 1.29 MPa, respectively). Gentamicin-enriched biomaterial showed burst release of the drug within the first 5 h, while, the zinc-loaded biomaterial exhibited a constant gradual release of the zinc ions. Conducted assays showed that developed biomaterials were non-toxic against human skin fibroblasts (cell viability in the range of 71-95 %) and revealed strong bactericidal activity (99.9 % reduction in the number of viable bacterial CFUs in direct contact test) against S. aureus. In the case of P. aeruginosa, only gentamicin-loaded biomaterial exhibited bactericidal effect. Additionally, biomaterials had the ability to uptake, lock in, and kill bacteria within their gel structure, enabling the cleansing of the wound bed at every dressing change. Finally, the treatment of severely infected wound in veterinary patient confirmed the effectiveness of gentamicin-loaded biomaterial. Biomaterial enriched with gentamicin possesses great potential to be used as a dressing material or sponge for the treatment of chronically infected wounds and surgical site infections. In turn, the zinc-loaded biomaterial may be used as a wound dressing to reduce and prevent microbial contamination.
Collapse
Affiliation(s)
- Michal Wojcik
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Paulina Kazimierczak
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Anna Wilczynska
- Department of Epizootiology and Infectious Diseases, University of Life Sciences in Lublin, Gleboka 30 Street, 20-612 Lublin, Poland
| | - Vladyslav Vivcharenko
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Lukasz Pajchel
- Department of Analytical Chemistry and Biomaterials, Medical University of Warsaw, Banacha 1 Street, 02-097 Warsaw, Poland
| | - Lukasz Adaszek
- Department of Epizootiology and Infectious Diseases, University of Life Sciences in Lublin, Gleboka 30 Street, 20-612 Lublin, Poland
| | - Agata Przekora
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland.
| |
Collapse
|
24
|
Soliman WE, Elsewedy HS, Younis NS, Shinu P, Elsawy LE, Ramadan HA. Evaluating Antimicrobial Activity and Wound Healing Effect of Rod-Shaped Nanoparticles. Polymers (Basel) 2022; 14:2637. [PMID: 35808682 PMCID: PMC9269196 DOI: 10.3390/polym14132637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Presently, the nanotechnology approach has gained a great concern in the media of drug delivery. Gold nanoparticles (Au-NPs) specially having a non-spherical structure, such as gold nanorods (GNR), are attracting much interest as antibacterial agent and many other medical fields. The aim of the current investigation was to characterize Au-NPs and investigate their antimicrobial and wound healing efficacy in diabetic animals. MATERIAL AND METHODS Au-NPs were characterized using a UV-Vis spectrophotometer, estimating their particle size, polydispersity (PDI), and assessing their morphological characters. Further, Au-NPs were estimated for their antibacterial and antifungal behavior. Ultimately, in vivo activity of Au-NPs was evaluated against excision wound healing in STZ-induced diabetic animals. RESULTS Au-NPs were found to show maximum absorption at 520 nm. They exhibited a particle size of 82.57 nm with a PDI value of 0.323. Additionally, they exhibited good antimicrobial activity against different bacterial strains. Topical application of Au-NPs caused a significantly increased percentage of wound area reduction, lesser time needed for epithelialization, and augmented hydroxyproline, collagen, and hexosamine levels demonstrating enhanced healing processes. Furthermore, Au-NPs displayed a significant intensification in angiogenesis-related factors (HIF-1α, TGF-β1, and VEGF), and antioxidant enzymes activities (CAT, SOD, GPx) as well as mitigated inflammatory mediators IL-6, IL-1β, TNF-α, and NF-κB) and lipid peroxidation (MDA). CONCLUSION Au-NPs exhibited proper particle size, and rod-shaped particles, with efficient antimicrobial behavior against different bacterial strains. Furthermore, Au-NPs demonstrated a promising wound healing activity in STZ-induced diabetic animals.
Collapse
Affiliation(s)
- Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt; (L.E.E.); (H.A.R.)
| | - Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia; (H.S.E.); (N.S.Y.)
| | - Nancy S. Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia; (H.S.E.); (N.S.Y.)
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia;
| | - Lamis E. Elsawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt; (L.E.E.); (H.A.R.)
| | - Heba A. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt; (L.E.E.); (H.A.R.)
| |
Collapse
|
25
|
Khella KF, Abd El Maksoud AI, Hassan A, Abdel-Ghany SE, Elsanhoty RM, Aladhadh MA, Abdel-Hakeem MA. Carnosic Acid Encapsulated in Albumin Nanoparticles Induces Apoptosis in Breast and Colorectal Cancer Cells. Molecules 2022; 27:molecules27134102. [PMID: 35807348 PMCID: PMC9268188 DOI: 10.3390/molecules27134102] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
Carnosic acid (CA) is a natural phenolic compound with several biomedical actions. This work was performed to study the use of CA-loaded polymeric nanoparticles to improve the antitumor activity of breast cancer cells (MCF-7) and colon cancer cells (Caco-2). CA was encapsulated in bovine serum albumin (BSA), chitosan (CH), and cellulose (CL) nanoparticles. The CA-loaded BSA nanoparticles (CA-BSA-NPs) revealed the most promising formula as it showed good loading capacity and the best release rate profile as the drug reached 80% after 10 h. The physicochemical characterization of the CA-BSA-NPs and empty carrier (BSA-NPs) was performed by the particle size distribution analysis, transmission electron microscopy (TEM), and zeta potential. The antitumor activity of the CA-BSA-NPs was evaluated by measuring cell viability, apoptosis rate, and gene expression of GCLC, COX-2, and BCL-2 in MCF-7 and Caco-2. The cytotoxicity assay (MTT) showed elevated antitumor activity of CA-BSA-NPs against MCF-7 and Caco-2 compared to free CA and BSA-NPs. Moreover, apoptosis test data showed an arrest of the Caco-2 cells at G2/M (10.84%) and the MCF-7 cells at G2/M (4.73%) in the CA-BSA-NPs treatment. RT-PCR-based gene expression analysis showed an upregulation of the GCLC gene and downregulation of the BCL-2 and COX-2 genes in cells treated with CA-BSA-NPs compared to untreated cells. In conclusion, CA-BSA-NPs has been introduced as a promising formula for treating breast and colorectal cancer.
Collapse
Affiliation(s)
- Katren F. Khella
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University of Science and Technology, Giza 3236101, Egypt; (K.F.K.); (A.I.A.E.M.); (M.A.A.-H.)
| | - Ahmed I. Abd El Maksoud
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University of Science and Technology, Giza 3236101, Egypt; (K.F.K.); (A.I.A.E.M.); (M.A.A.-H.)
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt;
| | - Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt
- Correspondence: (A.H.); (M.A.A.)
| | - Shaimaa E. Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University of Science and Technology, Giza 3236101, Egypt;
| | - Rafaat M. Elsanhoty
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt;
| | - Mohammed Abdullah Aladhadh
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: (A.H.); (M.A.A.)
| | - Mohamed A. Abdel-Hakeem
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University of Science and Technology, Giza 3236101, Egypt; (K.F.K.); (A.I.A.E.M.); (M.A.A.-H.)
| |
Collapse
|