1
|
Tayebi-Khorrami V, Fadaei MR, Fallahianshafiei S, Askari VR. Immune checkpoint blocking in cancer therapy using thermosensitive hydrogels: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04171-2. [PMID: 40314764 DOI: 10.1007/s00210-025-04171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/09/2025] [Indexed: 05/03/2025]
Abstract
Cancer is a challenging issue requiring new strategies for management and control. Immune checkpoint blockades (ICBs) increase the body's immune response against cancer by targeting specific receptors on T-lymphocytes. The FDA approved different ICBs for cancer treatment: anti-PD-1, PDL-1, and CTLA-4 inhibitors. Many immune checkpoint inhibitors (ICIs) are in clinical trials, highlighting their significance. Challenges like resistance and side effects have led researchers to explore new delivery strategies for ICIs. Thermosensitive hydrogels can change from sol to gel and vice versa due to their structure. They interact with aqueous medium through groups like ethyl, methyl, and propyl, forming hydrogen bonds. These bonds of hydrogen are temperature-sensitive and cause the change of the polymer from sol to gel at a temperature named critical solution temperature (CST). The using temperature-responsive polymers and ICBs showed a promising approach to sustained localized cancer therapy with lowering side effects on normal tissues. In this paper, we first define new investigations on immune therapy in cancer via ICBs. Then, we present recent studies of thermosensitive polymers in cancer therapy and the most used thermosensitive polymers in studies. Eventually, we discuss studies that used thermosensitive polymers in the delivery of ICBs and discuss new investigations in this field.
Collapse
Affiliation(s)
- Vahid Tayebi-Khorrami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Vahid Reza Askari
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Peng N, Du Y, Liu J, Li D, Li Y, Deng K, Li L, Jia P, Min J, Lin J. Injectable Polydopamine Nanoparticle-Incorporated Hydrogels for Antiangiogenesis and Stimulating Tumoricidal Immunity to Inhibit Metastasis and Recurrence Postresection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64447-64462. [PMID: 39540317 DOI: 10.1021/acsami.4c10363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Surgical resection is still the main means for clinical treatments of breast cancer, but the postoperative immunosuppressive microenvironment and neoangiogenesis of the residual tumors easily lead to tumor metastasis and recurrence, which will further endanger patients' lives. The combination of antiangiogenic therapy and immunotherapy may promote the mutually reinforced cycle of immune reprogramming and vascular normalization to avoid tumor metastasis and recurrence. Herein, we prepared polydopamine nanoparticles for improving tissue adhesion and enriching tumor-associated antigens. This nanoregulator together with regorafenib (REG) was further incorporated into a hydrogel developed from grafting adipic acid dihydrazide onto 2,2,6,6-tetramethylpiperidine-1-oxyl radical oxidized chitin and oxidized hyaluronic acid, which was injectable at the cavity after subcutaneous tumor surgery with good mechanical properties and degradability. The system showed long-term release of REG. After combining with anti-PD-L1, the hydrogel applied to the surgical wound exhibited a reduction in tumor metastasis and recurrence. This effect was achieved by suppressing angiogenesis and enhancing antitumor immunity, characterized by increased levels of effector T lymphocytes and activation of dendritic cells within tumors, spleens, and draining lymph nodes. The injectable hydrogel offers a promising strategy for postoperative management aimed at preventing tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P. R. China
| | - Yijing Du
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P. R. China
| | - Jinhong Liu
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, P. R. China
| | - Danyang Li
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, P. R. China
| | - Yonghao Li
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, P. R. China
| | - Kai Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, P. R. China
| | - Lewei Li
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P. R. China
| | - Peizhi Jia
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, P. R. China
| | - Juan Min
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, P. R. China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, P. R. China
| |
Collapse
|
3
|
Paul V J, Sharma P, Shanavas A. Self-Assembled Nanobiomaterials for Combination Immunotherapy. ACS APPLIED BIO MATERIALS 2024; 7:4962-4974. [PMID: 38116786 DOI: 10.1021/acsabm.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Nanotechnological interventions for cancer immunotherapy are a rapidly evolving paradigm with immense potential. Self-assembled nanobiomaterials present safer alternatives to their nondegradable counterparts and pose better functionalities in terms of controlled drug delivery and phototherapy to activate immunogenic cell death. In this Review, we discuss several classes of self-assembled nanobiomaterials based on polymers, lipids, peptides, hydrogel, metal organic frameworks, and covalent-organic frameworks with the ability to activate systemic immune response and convert a "cold" immunosuppressive tumor mass to a "hot" antitumor immune cell rich microenvironment. The unique aspects of these materials are underpinned, and their mechanisms of combinatorial immunotherapeutic action are discussed. Future challenges associated with their clinical translation are also highlighted.
Collapse
Affiliation(s)
- Johns Paul V
- Inorganic & Organic Nanomedicine (ION) Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Priyanka Sharma
- Inorganic & Organic Nanomedicine (ION) Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Asifkhan Shanavas
- Inorganic & Organic Nanomedicine (ION) Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| |
Collapse
|
4
|
Zheng H, Li M, Wu L, Liu W, Liu Y, Gao J, Lu Z. Progress in the application of hydrogels in immunotherapy of gastrointestinal tumors. Drug Deliv 2023; 30:2161670. [PMID: 36587630 PMCID: PMC9809389 DOI: 10.1080/10717544.2022.2161670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Gastrointestinal tumors are the most common cancers with the highest morbidity and mortality worldwide. Surgery accompanied by chemotherapy, radiotherapy and targeted therapy remains the first option for gastrointestinal tumors. However, poor specificity for tumor cells of these postoperative treatments often leads to severe side effects and poor prognosis. Tumor immunotherapy, including checkpoint blockade and tumor vaccines, has developed rapidly in recent years, showing good curative effects and minimal side effects in the treatment of gastrointestinal tumors. National Comprehensive Cancer Network guidelines recommend tumor immunotherapy as part of the treatment of gastrointestinal tumors. However, the heterogeneity of tumor cells, complicacy of the tumor microenvironment and poor tumor immunogenicity hamper the effectiveness of tumor immunotherapy. Hydrogels, defined as three-dimensional, hydrophilic, and water-insoluble polymeric networks, could significantly improve the overall response rate of immunotherapy due to their superior drug loading efficacy, controlled release and drug codelivery ability. In this article, we briefly describe the research progress made in recent years on hydrogel delivery systems in immunotherapy for gastrointestinal tumors and discuss the potential future application prospects and challenges to provide a reference for the clinical application of hydrogels in tumor immunotherapy.
Collapse
Affiliation(s)
- Hao Zheng
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenshang Liu
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yu Liu
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Jiangsu, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China,Jie Gao Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai200433, China
| | - Zhengmao Lu
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China,CONTACT Zhengmao Lu Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai200433, China
| |
Collapse
|
5
|
Alharbi B, Qanash H, Binsaleh NK, Alharthi S, Elasbali AM, Gharekhan CH, Mahmoud M, Lioudakis E, O'Leary JJ, Doherty DG, Mohamed BM, Gray SG. Proof of concept nanotechnological approach to in vitro targeting of malignant melanoma for enhanced immune checkpoint inhibition. Sci Rep 2023; 13:7462. [PMID: 37156818 PMCID: PMC10167246 DOI: 10.1038/s41598-023-34638-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
Immunotherapies, including immune checkpoint inhibitors, have limitations in their effective treatment of malignancies. The immunosuppressive environment associated with the tumor microenvironment may prevent the achievement of optimal outcomes for immune checkpoint inhibitors alone, and nanotechnology-based platforms for delivery of immunotherapeutic agents are increasingly being investigated for their potential to improve the efficacy of immune checkpoint blockade therapy. In this manuscript, nanoparticles were designed with appropriate size and surface characteristics to enhance their retention of payload so that they can transmit their loaded drugs to the tumor. We aimed to enhance immune cell stimulation by a small molecule inhibitor of PD-1/PD-L1 (BMS202) using nanodiamonds (ND). Melanoma cells with different disease stages were exposed to bare NDs, BMS202-NDs or BMS202 alone for 6 h. Following this, melanoma cells were co-cultured with freshly isolated human peripheral blood mononuclear cells (hPBMCs). The effects of this treatment combination on melanoma cells were examined on several biological parameters including cell viability, cell membrane damage, lysosomal mass/pH changes and expression of γHA2X, and caspase 3. Exposing melanoma cells to BMS202-NDs led to a stronger than normal interaction between the hPBMCs and the melanoma cells, with significant anti-proliferative effects. We therefore conclude that melanoma therapy has the potential to be enhanced by non-classical T-cell Immune responses via immune checkpoint inhibitors delivered by nanodiamonds-based nanoparticles.
Collapse
Affiliation(s)
- Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail, 55476, Saudi Arabia
| | - Husam Qanash
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail, 55476, Saudi Arabia.
| | - Naif K Binsaleh
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail, 55476, Saudi Arabia
| | - Salem Alharthi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, 55461, Saudi Arabia
| | - Abdulbaset M Elasbali
- Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakaka, 42421, Saudi Arabia
| | - Chandranil H Gharekhan
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Cochin, India
| | | | - Emmanouil Lioudakis
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Emer Casey Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin, Ireland
- Trinity St James's Cancer Institute, Dublin, Ireland
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland
| | - Derek G Doherty
- Trinity St James's Cancer Institute, Dublin, Ireland
- Department of Immunology, Trinity College Dublin, Dublin, Ireland
| | - Bashir M Mohamed
- Trinity St James's Cancer Institute, Dublin, Ireland.
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland.
- Department of Immunology, Trinity College Dublin, Dublin, Ireland.
| | - Steven G Gray
- Trinity St James's Cancer Institute, Dublin, Ireland
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Zhao J, Wang L, Zhang H, Liao B, Li Y. Progress of Research in In Situ Smart Hydrogels for Local Antitumor Therapy: A Review. Pharmaceutics 2022; 14:pharmaceutics14102028. [PMID: 36297463 PMCID: PMC9611441 DOI: 10.3390/pharmaceutics14102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Cancer seriously threatens human health. Surgery, radiotherapy and chemotherapy are the three pillars of traditional cancer treatment, with targeted therapy and immunotherapy emerging over recent decades. Standard drug regimens are mostly executed via intravenous injection (IV), especially for chemotherapy agents. However, these treatments pose severe risks, including off-target toxic side effects, low drug accumulation and penetration at the tumor site, repeated administration, etc., leading to inadequate treatment and failure to meet patients’ needs. Arising from these challenges, a local regional anticancer strategy has been proposed to enhance therapeutic efficacy and concomitantly reduce systemic toxicity. With the advances in biomaterials and our understanding of the tumor microenvironment, in situ stimulus-responsive hydrogels, also called smart hydrogels, have been extensively investigated for local anticancer therapy due to their injectability, compatibility and responsiveness to various stimuli (pH, enzyme, heat, light, magnetic fields, electric fields etc.). Herein, we focus on the latest progress regarding various stimuli that cause phase transition and drug release from smart hydrogels in local regional anticancer therapy. Additionally, the challenges and future trends of the reviewed in situ smart hydrogels for local drug delivery are summarized and proposed.
Collapse
|
7
|
Zhang Z, Wang J, Xia W, Cao D, Wang X, Kuang Y, Luo Y, Yuan C, Lu J, Liu X. Application of Hydrogels as Carrier in Tumor Therapy: A Review. Chem Asian J 2022; 17:e202200740. [PMID: 36070227 DOI: 10.1002/asia.202200740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/07/2022]
Abstract
Cancer is one of the most intractable diseases in the world because of its high recurrence rate, high metastasis rate and high lethality rate. Traditional chemotherapy, radiotherapy and surgery have unsatisfactory therapeutic effects and cause many severe side effects at the same time. Hydrogel is a new type of biomaterial with the advantages of good biocompatibility and easy degradation, which can be used as a carrier of functional nanomaterials for tumor therapy. Herein, we represent the progress of hydrogels with different skeletons and their application as carrier in tumor treatment. The hydrogels are listed as polyethylene glycol-based hydrogels, chitosan-based hydrogels, peptide-based hydrogels, hyaluronic acid-based hydrogels, steroid-based hydrogels and other hydrogels by skeletons, and their properties, modifications and toxicities were introduced. Some representative applications of combined hydrogels with nanomaterial for chemotherapy, photodynamic therapy, photothermal therapy, sonodynamic therapy, chemodynamic therapy and synergistic therapy are highlighted.
Collapse
Affiliation(s)
- Ziwen Zhang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Jinxia Wang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Wei Xia
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Dongmiao Cao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Xingyan Wang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Yunqi Kuang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Yu Luo
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Chunping Yuan
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| |
Collapse
|
8
|
Tong G, Peng T, Chen Y, Sha L, Dai H, Xiang Y, Zou Z, He H, Wang S. Effects of GLP-1 Receptor Agonists on Biological Behavior of Colorectal Cancer Cells by Regulating PI3K/AKT/mTOR Signaling Pathway. Front Pharmacol 2022; 13:901559. [PMID: 36034798 PMCID: PMC9399678 DOI: 10.3389/fphar.2022.901559] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) has become one of the top ten malignant tumors with a high incidence rate and mortality. Due to the lack of a good CRC screening program, most of the CRC patients are being transferred at the time of treatment. The conventional treatment cannot effectively improve the prognosis of CRC patients, and the target drugs can significantly prolong the overall survival of patients in the advanced stage. However, the use of single drug may lead to acquired drug resistance and various serious complications. Therefore, combined targeted drug therapy is the main alternative treatment with poor effect of single targeted drug therapy, which has important research significance for the treatment of CRC. Therefore, this study intends to culture CRC cell lines in vitro at the cell level and intervene with the GLP-1 receptor agonist liraglutide. The effects of liraglutide on the PI3K/Akt/mTOR signal pathway and CRC cell proliferation, cycle, migration, invasion, and apoptosis are explored by detecting cell proliferation, cycle, migration, invasion, and apoptosis and the expression of related mRNA and protein. The results showed that liraglutide, a GLP-1 receptor agonist, could block the CRC cell cycle, reduce cell proliferation, migration, and invasion and promote apoptosis by inhibiting the PI3K/Akt/mTOR signal pathway.
Collapse
Affiliation(s)
- Guoxiang Tong
- Academician Workstation, Changsha Medical University, Changsha, China
- Department of Endocrinology, The First Affiliated Hospital of Changsha Medical University, Changsha, China
- Hunan Evidence-based Biotechnology Co., Ltd., Changsha, China
| | - Tianhao Peng
- Hunan Evidence-based Biotechnology Co., Ltd., Changsha, China
| | - Ya Chen
- Hunan Evidence-based Biotechnology Co., Ltd., Changsha, China
| | - Lijuan Sha
- Hunan Evidence-based Biotechnology Co., Ltd., Changsha, China
| | - Huikang Dai
- Hunan Evidence-based Biotechnology Co., Ltd., Changsha, China
| | - Yidong Xiang
- Hunan Evidence-based Biotechnology Co., Ltd., Changsha, China
| | - Zhiqi Zou
- Hunan Evidence-based Biotechnology Co., Ltd., Changsha, China
| | - Heli He
- Department of Oncology, The First Affiliated Hospital of Changsha Medical University, Changsha, China
| | - Sha Wang
- Academician Workstation, Changsha Medical University, Changsha, China
- Department of Endocrinology, The First Affiliated Hospital of Changsha Medical University, Changsha, China
- *Correspondence: Sha Wang,
| |
Collapse
|
9
|
Ali F, Khan I, Chen J, Akhtar K, Bakhsh EM, Khan SB. Emerging Fabrication Strategies of Hydrogels and Its Applications. Gels 2022; 8:gels8040205. [PMID: 35448106 PMCID: PMC9024659 DOI: 10.3390/gels8040205] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
Recently, hydrogels have been investigated for the controlled release of bioactive molecules, such as for living cell encapsulation and matrices. Due to their remote controllability and quick response, hydrogels are widely used for various applications, including drug delivery. The rate and extent to which the drugs reach their targets are highly dependent on the carriers used in drug delivery systems; therefore the demand for biodegradable and intelligent carriers is progressively increasing. The biodegradable nature of hydrogel has created much interest for its use in drug delivery systems. The first part of this review focuses on emerging fabrication strategies of hydrogel, including physical and chemical cross-linking, as well as radiation cross-linking. The second part describes the applications of hydrogels in various fields, including drug delivery systems. In the end, an overview of the application of hydrogels prepared from several natural polymers in drug delivery is presented.
Collapse
Affiliation(s)
- Fayaz Ali
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology Avenida Wai Long, Taipa, Macau 999078, China;
| | - Jianmin Chen
- School of Pharmacy and Medical Technology, Putian University, No. 1133 Xueyuan Zhong Jie, Putian 351100, China
- Correspondence: (J.C.); (S.B.K.)
| | - Kalsoom Akhtar
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Esraa M. Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (J.C.); (S.B.K.)
| |
Collapse
|
10
|
Yamaguchi H, Hsu JM, Yang WH, Hung MC. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat Rev Clin Oncol 2022; 19:287-305. [DOI: 10.1038/s41571-022-00601-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
|