1
|
Ibrahim SY, Carter J, Bagchi RA. Histone Deacetylases in Metabolism: the Known and the Unexplored. Physiology (Bethesda) 2025; 40:0. [PMID: 39470602 DOI: 10.1152/physiol.00044.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl groups from key lysine residues on histone and nonhistone proteins and thereby regulate gene transcription. They have been implicated in several biological processes in both healthy and pathological settings. This review discusses the role of HDACs in multiple metabolically active tissues and highlights their contribution to the pathogenesis of tissue-specific maladaptation and diseases. We also summarize the current knowledge gaps and potential ways to address them in future studies.
Collapse
Affiliation(s)
- Somaya Y Ibrahim
- College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
- Department of Physiology and Cell Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Jayden Carter
- Department of Physiology and Cell Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Rushita A Bagchi
- Department of Physiology and Cell Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
2
|
Liu YQ, Yang Q, He GW. Post-translational acylation of proteins in cardiac hypertrophy. Nat Rev Cardiol 2025:10.1038/s41569-025-01150-1. [PMID: 40229510 DOI: 10.1038/s41569-025-01150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2025] [Indexed: 04/16/2025]
Abstract
Acylations are post-translational modifications in which functional groups are attached to amino acids on proteins. Most acylations (acetylation, butyrylation, crotonylation, lactylation, malonylation, propionylation and succinylation) involve lysine but cysteine (palmitoylation) and glycine (myristoylation) residues can also be altered. Acylations have important roles in physiological and pathophysiological processes, including cardiac hypertrophy and related cardiovascular diseases. These post-translational modifications influence chromatin architecture, transcriptional regulation and metabolic pathways, thereby affecting cardiomyocyte function and pathology. The dynamic interaction between these acylations and their regulatory enzymes, such as histone acetyltransferases, histone deacetylases and sirtuins, underscores the complexity of cellular homeostasis and pathological processes. Emerging evidence highlights the therapeutic potential of targeting acylations to modulate enzyme activity and metabolite levels, offering promising avenues for novel treatments. In this Review, we explore the diverse mechanisms through which acylations contribute to cardiac hypertrophy, highlighting the complexity and potential therapeutic targets in this regulatory network.
Collapse
Affiliation(s)
- Ying-Qi Liu
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Qin Yang
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China.
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China.
- Division of Cardiothoracic Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
3
|
Zhou H, Kee HJ, Wan L, Asfaha Y, Fischer F, Kassack MU, Kurz T, Kim SH, Kee SJ, Hong YJ, Jeong MH. YAK577 Attenuates Cardiac Remodeling and Fibrosis in Isoproterenol-Infused Heart Failure Mice by Downregulating MMP12. Korean Circ J 2025; 55:231-247. [PMID: 39601396 PMCID: PMC11922594 DOI: 10.4070/kcj.2024.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Heart failure is a potentially fatal event caused by diverse cardiovascular diseases, leading to high morbidity and mortality. Histone deacetylase (HDAC) inhibitors positively influence cardiac hypertrophy, fibrosis, hypertension, myocardial infarction, and heart failure, causing some side effects. We aimed to investigate the effect of the novel HDAC inhibitor YAK577 on the heart failure mouse model and its underlying mechanism. METHODS New hydroxamic acid YAK577 was prepared via methyl-2,3-diphenylpropanoate synthesis using carboxylic acids. We used a micro-osmotic pump, including isoproterenol (ISO; 80 mg/kg/day), to induce a heart failure with reduced ejection fraction. Cardiac hypertrophy was assessed by heart weight to body weight ratio and cross-sectional area. The left ventricular (LV) function was assessed by echocardiography. Fibrosis was evaluated using picrosirius red staining. Overexpression and knockdown experiments were performed to investigate the association between HDAC8 and matrix metalloproteinase 12 (MMP12). RESULTS YAK577 treatment restored ISO-induced reduction in LV fractional shortening and ejection fraction (n=9-11). YAK577 significantly downregulated cardiac hypertrophy marker genes (natriuretic peptide B, NPPB, and myosin heavy chain 7, MYH7) and cardiomyocyte size in vitro but not in vivo. YAK577 ameliorated cardiac fibrosis and fibrosis-related genes in vivo and in vitro. Additionally, YAK577 reduced elevated HDAC8 and MMP12 mRNA and protein expressions in ISO-infused mice, H9c2 cells, and rat neonatal cardiomyocytes. HDAC8 overexpression stimulated MMP12 and NPPB mRNA levels, while HDAC8 knockdown downregulated these genes. CONCLUSIONS YAK577 acts as a novel heart failure drug through the HDAC8/MMP12 pathway.
Collapse
Affiliation(s)
- Hongyan Zhou
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea.
| | - Le Wan
- Deparment of Orthopedics, Chonnam National University Hospital, Gwangju, Korea
| | - Yodita Asfaha
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Fabian Fischer
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrβe 1, Düsseldorf, Germany
| | - Seong Hoon Kim
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Young Joon Hong
- Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiology, Gwangju Veterans Hospital, Gwangju, Korea.
| |
Collapse
|
4
|
Theodoropoulou MA, Mantzourani C, Kokotos G. Histone Deacetylase (HDAC) Inhibitors as a Novel Therapeutic Option Against Fibrotic and Inflammatory Diseases. Biomolecules 2024; 14:1605. [PMID: 39766311 PMCID: PMC11674560 DOI: 10.3390/biom14121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play an essential role in the onset and progression of cancer. As a consequence, a variety of HDAC inhibitors (HDACis) have been developed as potent anticancer agents, several of which have been approved by the FDA for cancer treatment. However, recent accumulated research results have suggested that HDACs are also involved in several other pathophysiological conditions, such as fibrotic, inflammatory, neurodegenerative, and autoimmune diseases. Very recently, the HDAC inhibitor givinostat has been approved by the FDA for an indication beyond cancer: the treatment of Duchenne muscular dystrophy. In recent years, more and more HDACis have been developed as tools to understand the role that HDACs play in various disorders and as a novel therapeutic approach to fight various diseases other than cancer. In the present perspective article, we discuss the development and study of HDACis as anti-fibrotic and anti-inflammatory agents, covering the period from 2020-2024. We envision that the discovery of selective inhibitors targeting specific HDAC isozymes will allow the elucidation of the role of HDACs in various pathological processes and will lead to the development of promising treatments for such diseases.
Collapse
Affiliation(s)
- Maria A. Theodoropoulou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.A.T.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Christiana Mantzourani
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.A.T.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.A.T.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
5
|
Komal S, Gao Y, Wang ZM, Yu QW, Wang P, Zhang LR, Han SN. Epigenetic Regulation in Myocardial Fibroblasts and Its Impact on Cardiovascular Diseases. Pharmaceuticals (Basel) 2024; 17:1353. [PMID: 39458994 PMCID: PMC11510975 DOI: 10.3390/ph17101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Myocardial fibroblasts play a crucial role in heart structure and function. In recent years, significant progress has been made in understanding the epigenetic regulation of myocardial fibroblasts, which is essential for cardiac development, homeostasis, and disease progression. In healthy hearts, cardiac fibroblasts (CFs) play a crucial role in synthesizing the extracellular matrix (ECM) when in a dormant state. However, under pathological and environmental stress, CFs transform into activated fibroblasts known as myofibroblasts. These myofibroblasts produce an excess of ECM, which promotes cardiac fibrosis. Although multiple molecular mechanisms are associated with CF activation and myocardial dysfunction, emerging evidence highlights the significant involvement of epigenetic regulation in this process. Epigenetics refers to the heritable changes in gene expression that occur without altering the DNA sequence. These mechanisms have emerged as key regulators of myocardial fibroblast function. This review focuses on recent advancements in the understanding of the role of epigenetic regulation and emphasizes the impact of epigenetic modifications on CF activation. Furthermore, we present perspectives and prospects for future research on epigenetic modifications and their implications for myocardial fibroblasts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.K.); (Y.G.); (Z.-M.W.); (Q.-W.Y.); (P.W.); (L.-R.Z.)
| |
Collapse
|
6
|
Lin C, Sniezek CM, McGann CD, Karki R, Giglio RM, Garcia BA, McFaline-Figeroa JL, Schweppe DK. Defining the heterogeneous molecular landscape of lung cancer cell responses to epigenetic inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.592075. [PMID: 38853901 PMCID: PMC11160595 DOI: 10.1101/2024.05.23.592075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Epigenetic inhibitors exhibit powerful antiproliferative and anticancer activities. However, cellular responses to small-molecule epigenetic inhibition are heterogenous and dependent on factors such as the genetic background, metabolic state, and on-/off-target engagement of individual small-molecule compounds. The molecular study of the extent of this heterogeneity often measures changes in a single cell line or using a small number of compounds. To more comprehensively profile the effects of small-molecule perturbations and their influence on these heterogeneous cellular responses, we present a molecular resource based on the quantification of chromatin, proteome, and transcriptome remodeling due to histone deacetylase inhibitors (HDACi) in non-isogenic cell lines. Through quantitative molecular profiling of 10,621 proteins, these data reveal coordinated molecular remodeling of HDACi treated cancer cells. HDACi-regulated proteins differ greatly across cell lines with consistent (JUN, MAP2K3, CDKN1A) and divergent (CCND3, ASF1B, BRD7) cell-state effectors. Together these data provide valuable insight into cell-type driven and heterogeneous responses that must be taken into consideration when monitoring molecular perturbations in culture models.
Collapse
Affiliation(s)
- Chuwei Lin
- Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | | | | | - Rashmi Karki
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ross M. Giglio
- Biomedical Engineer, Columbia University, New York, NY 10027, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Devin K. Schweppe
- Genome Sciences, University of Washington, Seattle, WA 98105, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Du H, Zhang Y, Guo H, Cheng X, Tian H, Wang Y, Wang H, Song Y, Duan X, Ma D. Malus toringoides (Rehd.) Hughes decoction alleviates isoproterenol-induced cardiac fibrosis by inhibiting cardiomyocyte inflammation and pyroptosis via the HK1/NLRP3 signaling pathway. Biosci Biotechnol Biochem 2024; 88:956-965. [PMID: 38697933 DOI: 10.1093/bbb/zbae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Malus toringoides (Rehd.) Hughes, called "Eseye (Ese)," is a traditional medicinal plant from the Tibet province of China that has proven effective in treating cardiac conditions due to its anti-inflammatory, antioxidative, and antiapoptotic properties. In this study, we explored the underlying protective mechanisms of Ese decoction in isoproterenol (ISO)-induced cardiac fibrosis (CF) and established the fact that treatment with an Ese decoction attenuated tissue injury, decreased the release of IL-1β, IL-18, TNF-α, and caspase-3, and elevated the Bax/Bcl-2 ratio in CF mice. We also found that with Ese treatment damage to the mitochondrial ultrastructure of myocardium was alleviated, and the level of reactive oxygen species was markedly diminished. Ese inhibited the expression of proteins associated with pyroptosis by the HK1/NLRP3 signaling pathway and also improved CF. Due to the anti-inflammatory, antioxidative, and antiapoptotic characteristics of Ese decoction, we found that Ese protected against ISO-induced CF, by inhibiting inflammation and pyroptosis as mediated by the HK1/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Huiru Du
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang, Hebei, China
| | - Yuling Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Haochuan Guo
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xizhen Cheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Haolin Tian
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yanan Wang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Hongfang Wang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China, Shijiazhuang, Hebei, China
| | - Yongxing Song
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China, Shijiazhuang, Hebei, China
| | - Xuhong Duan
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, Hebei, China
| | - Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China, Shijiazhuang, Hebei, China
- Hebei Technology Innovation Center of TCM Formula Preparations, Shijiazhuang, Hebei, China
| |
Collapse
|
8
|
Yuan L, Wang T, Duan J, Zhou J, Li N, Li G, Zhou H. Expression Profiles and Bioinformatic Analysis of Circular RNAs in Db/Db Mice with Cardiac Fibrosis. Diabetes Metab Syndr Obes 2024; 17:2107-2120. [PMID: 38799279 PMCID: PMC11128257 DOI: 10.2147/dmso.s465588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Cardiac fibrosis is one of the important causes of heart failure and death in diabetic cardiomyopathy (DCM) patients. Circular RNAs (circRNAs) are covalently closed RNA molecules in eukaryotes and have high stability. Their role in myocardial fibrosis with diabetic cardiomyopathy (DCM) remain to be fully elucidated. This study aimed to understand the expression profiles of circRNAs in myocardial fibrosis with DCM, exploring the possible biomarkers and therapeutic targets for DCM. Methods At 21 weeks of age, db/db mice established the type 2 DCM model measured by echocardiography, and the cardiac tissue was extracted for Hematoxylin-eosin, Masson's trichrome staining, and transmission electron microscopy. Subsequently, the expression profile of circRNAs in myocardial fibrosis of db/db mice was constructed using microarray hybridization and verified by real-time quantitative polymerase chain reaction. A circRNA-microRNA-messenger RNA coexpression network was constructed, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were done. Results Compared with normal control mice, db/db mice had 77 upregulated circRNAs and 135 downregulated circRNAs in their chromosomes (fold change ≥1.5, P ≤ 0.05). Moreover, the enrichment analysis of circRNA host genes showed that these differentially expressed circRNAs were mainly involved in mitogen-activated protein kinase signaling pathways. CircPHF20L1, circCLASP1, and circSLC8A1 were the key circRNAs. Moreover, circCLASP1/miR-182-5p/Wnt7a, circSLC8A1/miR-29b-1-5p/Col12a1, and most especially circPHF20L1/miR-29a-3p/Col6a2 might be three novel axes in the development of myocardial fibrosis in DCM. Conclusion The findings will provide some novel circRNAs and molecular pathways for the prevention or clinical treatment of DCM through intervention with specific circRNAs.
Collapse
Affiliation(s)
- Lingling Yuan
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| | - Ting Wang
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| | - Jinsheng Duan
- Department of Cardiology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| | - Jing Zhou
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| | - Na Li
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| | - Guizhi Li
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| | - Hong Zhou
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050004, People’s Republic of China
| |
Collapse
|
9
|
Tian J, Li W, Zeng L, Li Y, Du J, Li Y, Li B, Su G. HBI-8000 improves heart failure with preserved ejection fraction via the TGF-β1/MAPK signalling pathway. J Cell Mol Med 2024; 28:e18238. [PMID: 38509729 PMCID: PMC10955178 DOI: 10.1111/jcmm.18238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/18/2024] [Accepted: 02/09/2024] [Indexed: 03/22/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for approximately 50% of total heart failure patients and is characterized by peripheral circulation, cardiac remodelling and comorbidities (such as advanced age, obesity, hypertension and diabetes) with limited treatment options. Chidamide (HBI-8000) is a domestically produced benzamide-based histone deacetylase isoform-selective inhibitor used for the treatment of relapsed refractory peripheral T-cell lymphomas. Based on our in vivo studies, we propose that HBI-8000 exerts its therapeutic effects by inhibiting myocardial fibrosis and myocardial hypertrophy in HFpEF patients. At the cellular level, we found that HBI-8000 inhibits AngII-induced proliferation and activation of CFs and downregulates the expression of fibrosis-related factors. In addition, we observed that the HFpEF group and AngII stimulation significantly increased the expression of TGF-β1 as well as phosphorylated p38MAPK, JNK and ERK, whereas the expression of the above factors was significantly reduced after HBI-8000 treatment. Activation of the TGF-β1/MAPK pathway promotes the development of fibrotic remodelling, and pretreatment with SB203580 (p38MAPK inhibitor) reverses this pathological change. In conclusion, our data suggest that HBI-8000 inhibits fibrosis by modulating the TGF-β1/MAPK pathway thereby improving HFpEF. Therefore, HBI-8000 may become a new hope for the treatment of HFpEF patients.
Collapse
Affiliation(s)
- Jing Tian
- Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Wenjing Li
- Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Lu Zeng
- Research Center of Translational Medicine, Jinan Central HospitalShandong First Medical UniversityJinanShandongChina
| | - Yang Li
- Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Jiamin Du
- Department of Cardiology, Jinan Central Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Ying Li
- Research Center of Translational Medicine, Jinan Central HospitalShandong First Medical UniversityJinanShandongChina
| | - Bin Li
- Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Research Center of Translational Medicine, Jinan Central HospitalShandong First Medical UniversityJinanShandongChina
| | - Guohai Su
- Central Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Research Center of Translational Medicine, Jinan Central HospitalShandong First Medical UniversityJinanShandongChina
| |
Collapse
|
10
|
Zhang W, Zhang Y, Xia Y, Feng G, Wang Y, Wei C, Tang A, Song K, Qiu R, Wu Y, Jin S. Choline induced cardiac dysfunction by inhibiting the production of endogenous hydrogen sulfide in spontaneously hypertensive rats. Physiol Res 2023; 72:719-730. [PMID: 38215059 PMCID: PMC10805251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/07/2023] [Indexed: 01/14/2024] Open
Abstract
To investigate the exact effects of dietary choline on hypertensive heart disease (HHD) and explore the potential mechanisms, male spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were randomly divided into five groups as follows: WKY group, WKY + Choline group, SHR group, SHR + Choline group, and SHR + Choline + NaHS group. In choline treatment groups, rats were fed with 1.3% (w/v) choline in the drinking water for 3 months. The rats in the SHR + Choline + NaHS group were intraperitoneally injected with NaHS (100 micromol/kg/day, a hydrogen sulfide (H2S) donor) for 3 months. After 3 months, left ventricular ejection fraction (LVEF) and fractional shortening (LVFS), the indicators of cardiac function measured by echocardiography, were increased significantly in SHR as compared to WKY, although there was no significant difference in collagen volumes and Bax/Bcl-2 ratio between the two groups, indicating the early stage of cardiac hypertrophy. There was a significant decrease in LVEF and LVFS and an increase in collagen volumes and Bax/Bcl-2 ratio in SHR fed with choline, meanwhile, plasma H2S levels were significantly decreased significantly in SHR fed with choline accompanying by the decrease of cystathionine-gamma-lyase (CSE) activity. Three months of NaHS significantly increased plasma H2S levels, ameliorated cardiac dysfunction and inhibited cardiac fibrosis and apoptosis in SHR fed with choline. In conclusion, choline aggravated cardiac dysfunction in HHD through inhibiting the production of endogenous H2S, which was reversed by supplementation of exogenous H2S donor.
Collapse
Affiliation(s)
- W Zhang
- Department of Physiology, Hebei Medical University, Hebei, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Islam R, Singh R. Curcumin and PCI-34051 combined treatment ameliorates inflammation and fibrosis by affecting MAP kinase pathway. Inflammopharmacology 2023; 31:3063-3079. [PMID: 37934384 DOI: 10.1007/s10787-023-01371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE Bronchoconstriction, along with inflammation and hyperresponsiveness is the characteristic feature associated with asthma, contributing to variable airflow obstruction, which manifests shortness of breath, cough and wheeze, etc. Histone deacetylases 8 (HDAC8) is the member of class I HDAC family and known to regulate microtubule integrity and muscle contraction. Therefore, we aimed to investigate the effects of HDAC8 inhibition in murine model of asthma using Pan-HDAC inhibitor curcumin (CUR) and HDAC8-specific inhibitor PCI-34051 (PCI), alone and in combination. MATERIALS AND METHODS To develop asthmatic mouse model, Balb/c mice were sensitized and challenged with ovalbumin (OVA). CUR (10 mg/kg, pre, post, alone and combined treatment) and PCI (0.5 mg/kg), were administered through intranasal (i.n) route, an hour before OVA aerosol challenge. Effects of HDAC8 inhibition by CUR and PCI pretreatments were evaluated in terms of inflammation, oxidative stress and fibrosis markers. Efficacy of curcumin post-treatment (CUR(p)) was also evaluated simultaneously. RESULTS Inflammatory cell recruitment, oxidative stress (reactive oxygen species, nitric oxide), histamine and Immunoglobulin E (IgE) levels and expression of fibrosis markers including hydroxyproline, matrix metalloproteinases-9 and alpha smooth muscle actin (MMP-9 and α-SMA) were significantly reduced by CUR, CUR(p), PCI-alone and combined treatments. Protein expressions of HDAC8, Nuclear factor-κB (NF-κB) accompanied by MAPKs (mitogen-activated protein kinases) were significantly reduced by the treatments. Structural alterations were examined by histopathological analysis and linked with the fibrotic changes. CONCLUSIONS Present study indicates protective effects of HDAC8 inhibition in asthma using HDAC8 using CUR and PCI alone or in combination, attenuates airway inflammation, fibrosis and remodeling; hence, bronchoconstriction was accompanied through modulation of MAP kinase pathway.
Collapse
Affiliation(s)
- Ramiya Islam
- Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, India
| | - Rashmi Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
12
|
Chu L, Xie D, Xu D. Epigenetic Regulation of Fibroblasts and Crosstalk between Cardiomyocytes and Non-Myocyte Cells in Cardiac Fibrosis. Biomolecules 2023; 13:1382. [PMID: 37759781 PMCID: PMC10526373 DOI: 10.3390/biom13091382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/10/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetic mechanisms and cell crosstalk have been shown to play important roles in the initiation and progression of cardiac fibrosis. This review article aims to provide a thorough overview of the epigenetic mechanisms involved in fibroblast regulation. During fibrosis, fibroblast epigenetic regulation encompasses a multitude of mechanisms, including DNA methylation, histone acetylation and methylation, and chromatin remodeling. These mechanisms regulate the phenotype of fibroblasts and the extracellular matrix composition by modulating gene expression, thereby orchestrating the progression of cardiac fibrosis. Moreover, cardiac fibrosis disrupts normal cardiac function by imposing myocardial mechanical stress and compromising cardiac electrical conduction. This review article also delves into the intricate crosstalk between cardiomyocytes and non-cardiomyocytes in the heart. A comprehensive understanding of the mechanisms governing epigenetic regulation and cell crosstalk in cardiac fibrosis is critical for the development of effective therapeutic strategies. Further research is warranted to unravel the precise molecular mechanisms underpinning these processes and to identify potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Dachun Xu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 315 Yanchang Middle Road, Shanghai 200072, China; (L.C.); (D.X.)
| |
Collapse
|
13
|
Guo T, Hu S, Xu W, Zhou J, Chen F, Gao T, Qu W, Chen F, Lv Z, Lu L. Elevated expression of histone deacetylase HDAC8 suppresses arginine-proline metabolism in necrotizing enterocolitis. iScience 2023; 26:106882. [PMID: 37260741 PMCID: PMC10227426 DOI: 10.1016/j.isci.2023.106882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/07/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
Epigenetic alterations are especially important in necrotizing enterocolitis (NEC). Here, we reported that histone deacetylase 8 (HDAC8) plays a previously unknown role in modulating arginine metabolism via acetylation of histone 3 lysine 9 (acetyl-H3K9) regulation during the pathogenesis of NEC. We found that HDAC8 was upregulated in humans and mice intestinal samples with NEC, while selective inhibition of HDAC8 expression ameliorated NEC. HDAC8 regulates enzymes involved in the metabolic conversion of proline to arginine (PRODH, PRODH2, OAT, and OTC) and arginine to ornithine (ARG1). The results showed that H3K9ac signal in the PRODH/PRODH2 promoter region was mediated by HDAC8. Additionally, the decreased concentration of butyric acid was strongly correlated with elevated HDAC8 levels and circulating arginine, which may result from an unbalanced Firmicutes/Bacteroidetes ratio. These results reveal previously underappreciated roles of microbial metabolites and HDAC8 to coordinate the arginine metabolism during NEC development.
Collapse
Affiliation(s)
- Ting Guo
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Shaohua Hu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Weijue Xu
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Jin Zhou
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Feng Chen
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Tingting Gao
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Wenqian Qu
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Faling Chen
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Li Lu
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| |
Collapse
|
14
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
15
|
Tian S, Zhao H, Guo H, Feng W, Jiang C, Jiang Y. Propolis Ethanolic Extract Attenuates D-gal-induced C2C12 Cell Injury by Modulating Nrf2/HO-1 and p38/p53 Signaling Pathways. Int J Mol Sci 2023; 24:ijms24076408. [PMID: 37047379 PMCID: PMC10094417 DOI: 10.3390/ijms24076408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Previous study has shown that propolis ethanolic extract (PEE) has a protective effect on aging skeletal muscle atrophy. However, the exact molecular mechanism remains unclear. This study aimed to investigate the effect of PEE on D-galactose (D-gal)-induced damage in mouse C2C12 cells. The results revealed that PEE increased the viability of senescent C2C12 cells, decreased the number of senescence-associated β-galactosidase (SA-β-Gal)-positive cells and promoted the differentiation of C2C12 cells. PEE resisted oxidative stress caused by D-gal by activating the Nrf2/HO-1 signaling pathway and maintained the differentiation ability of C2C12 cells. PEE inhibited apoptosis by suppressing p38 phosphorylation and reducing p53 expression. In summary, our findings reveal the molecular mechanism by which PEE protects D-gal-induced C2C12 cells, providing a theoretical basis for the development of PEE for the alleviation of muscle atrophy.
Collapse
Affiliation(s)
- Songhao Tian
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
- Department of Medical Laboratory, Fenyang College of Shanxi Medical University, Fenyang 032200, China
| | - Huiting Zhao
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Hongru Guo
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Wei Feng
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Conglin Jiang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Yusuo Jiang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
- Correspondence:
| |
Collapse
|
16
|
Funamoto M, Imanishi M, Tsuchiya K, Ikeda Y. Roles of histone acetylation sites in cardiac hypertrophy and heart failure. Front Cardiovasc Med 2023; 10:1133611. [PMID: 37008337 PMCID: PMC10050342 DOI: 10.3389/fcvm.2023.1133611] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
Heart failure results from various physiological and pathological stimuli that lead to cardiac hypertrophy. This pathological process is common in several cardiovascular diseases and ultimately leads to heart failure. The development of cardiac hypertrophy and heart failure involves reprogramming of gene expression, a process that is highly dependent on epigenetic regulation. Histone acetylation is dynamically regulated by cardiac stress. Histone acetyltransferases play an important role in epigenetic remodeling in cardiac hypertrophy and heart failure. The regulation of histone acetyltransferases serves as a bridge between signal transduction and downstream gene reprogramming. Investigating the changes in histone acetyltransferases and histone modification sites in cardiac hypertrophy and heart failure will provide new therapeutic strategies to treat these diseases. This review summarizes the association of histone acetylation sites and histone acetylases with cardiac hypertrophy and heart failure, with emphasis on histone acetylation sites.
Collapse
Affiliation(s)
- Masafumi Funamoto
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Correspondence: Masafumi Funamoto Yasumasa Ikeda
| | - Masaki Imanishi
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Correspondence: Masafumi Funamoto Yasumasa Ikeda
| |
Collapse
|
17
|
Naringenin Attenuates Isoprenaline-Induced Cardiac Hypertrophy by Suppressing Oxidative Stress through the AMPK/NOX2/MAPK Signaling Pathway. Nutrients 2023; 15:nu15061340. [PMID: 36986070 PMCID: PMC10056776 DOI: 10.3390/nu15061340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Cardiac hypertrophy is accompanied by increased myocardial oxidative stress, and whether naringenin, a natural antioxidant, is effective in the therapy of cardiac hypertrophy remains unknown. In the present study, different dosage regimens (25, 50, and 100 mg/kg/d for three weeks) of naringenin (NAR) were orally gavaged in an isoprenaline (ISO) (7.5mg/kg)-induced cardiac hypertrophic C57BL/6J mouse model. The administration of ISO led to significant cardiac hypertrophy, which was alleviated by pretreatment with naringenin in both in vivo and in vitro experiments. Naringenin inhibited ISO-induced oxidative stress, as demonstrated by the increased SOD activity, decreased MDA level and NOX2 expression, and inhibited MAPK signaling. Meanwhile, after the pretreatment with compound C (a selective AMPK inhibitor), the anti-hypertrophic and anti-oxidative stress effects of naringenin were blocked, suggesting the protective effect of naringenin on cardiac hypertrophy. Our present study indicated that naringenin attenuated ISO-induced cardiac hypertrophy by regulating the AMPK/NOX2/MAPK signaling pathway.
Collapse
|
18
|
Notch1 Is Involved in Physiologic Cardiac Hypertrophy of Mice via the p38 Signaling Pathway after Voluntary Running. Int J Mol Sci 2023; 24:ijms24043212. [PMID: 36834623 PMCID: PMC9966550 DOI: 10.3390/ijms24043212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Appropriate exercise such as voluntary wheel-running can induce physiological cardiac hypertrophy. Notch1 plays an important role in cardiac hypertrophy; however, the experimental results are inconsistent. In this experiment, we aimed to explore the role of Notch1 in physiological cardiac hypertrophy. Twenty-nine adult male mice were randomly divided into a Notch1 heterozygous deficient control (Notch1+/- CON) group, a Notch1 heterozygous deficient running (Notch1+/- RUN) group, a wild type control (WT CON) group, and a wild type running (WT RUN) group. Mice in the Notch1+/- RUN and WT RUN groups had access to voluntary wheel-running for two weeks. Next, the cardiac function of all of the mice was examined by echocardiography. The H&E staining, Masson trichrome staining, and a Western blot assay were carried out to analyze cardiac hypertrophy, cardiac fibrosis, and the expression of proteins relating to cardiac hypertrophy. After two-weeks of running, the Notch1 receptor expression was decreased in the hearts of the WT RUN group. The degree of cardiac hypertrophy in the Notch1+/- RUN mice was lower than that of their littermate control. Compared to the Notch1+/- CON group, Notch1 heterozygous deficiency could lead to a decrease in Beclin-1 expression and the ratio of LC3II/LC3I in the Notch1+/- RUN group. The results suggest that Notch1 heterozygous deficiency could partly dampen the induction of autophagy. Moreover, Notch1 deficiency may lead to the inactivation of p38 and the reduction of β-catenin expression in the Notch1+/- RUN group. In conclusion, Notch1 plays a critical role in physiologic cardiac hypertrophy through the p38 signaling pathway. Our results will help to understand the underlying mechanism of Notch1 on physiological cardiac hypertrophy.
Collapse
|
19
|
Fu X, Zhang Y. Research progress of p38 as a new therapeutic target against morphine tolerance and the current status of therapy of morphine tolerance. J Drug Target 2023; 31:152-165. [PMID: 36264036 DOI: 10.1080/1061186x.2022.2138895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
With the development of the medical industry, new painkillers continue to appear in people's field of vision, but so far no painkiller can replace morphine. While morphine has a strong analgesic effect, it is also easy to produce pain sensitivity and tolerance. Due to the great inter-individual differences in patient responses, there are few clear instructions on how to optimise morphine administration regimens, which complicates clinicians' treatment strategies and limits the effectiveness of morphine in long-term pain therapy. P38MAPK is a key member of the MAPK family. Across recent years, it has been discovered that p38MAPK rises dramatically in a wide range of morphine tolerance animal models. Morphine tolerance can be reduced or reversed by inhibiting p38MAPK. However, the role and specific mechanism of p38MAPK are not clear. In this review, we synthesise the relevant findings, highlight the function and potential mechanism of p38MAPK in morphine tolerance, as well as the present status and efficacy of morphine tolerance therapy, and underline the future promise of p38MAPK targeted morphine tolerance treatment.
Collapse
Affiliation(s)
- Xiao Fu
- Inner Mongolia Medical University, Hohhot, China
| | - Yanhong Zhang
- Department of Anesthesiology, People's Hospital Affiliated to Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
20
|
Fontana A, Cursaro I, Carullo G, Gemma S, Butini S, Campiani G. A Therapeutic Perspective of HDAC8 in Different Diseases: An Overview of Selective Inhibitors. Int J Mol Sci 2022; 23:ijms231710014. [PMID: 36077415 PMCID: PMC9456347 DOI: 10.3390/ijms231710014] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylases (HDACs) are epigenetic enzymes which participate in transcriptional repression and chromatin condensation mechanisms by removing the acetyl moiety from acetylated ε-amino group of histone lysines and other non-histone proteins. In recent years, HDAC8, a class I HDAC, has emerged as a promising target for different disorders, including X-linked intellectual disability, fibrotic diseases, cancer, and various neuropathological conditions. Selective HDAC8 targeting is required to limit side effects deriving from the treatment with pan-HDAC inhibitors (HDACis); thus, many endeavours have focused on the development of selective HDAC8is. In addition, polypharmacological approaches have been explored to achieve a synergistic action on multi-factorial diseases or to enhance the drug efficacy. In this frame, proteolysis-targeting chimeras (PROTACs) might be regarded as a dual-targeting approach for attaining HDAC8 proteasomal degradation. This review highlights the most relevant and recent advances relative to HDAC8 validation in various diseases, providing a snapshot of the current selective HDAC8is, with a focus on polyfunctional modulators.
Collapse
Affiliation(s)
- Anna Fontana
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Ilaria Cursaro
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Gabriele Carullo
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Correspondence: ; Tel.: +39-057-723-4161
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
21
|
Shao J, Liu J, Zuo S. Roles of Epigenetics in Cardiac Fibroblast Activation and Fibrosis. Cells 2022; 11:cells11152347. [PMID: 35954191 PMCID: PMC9367448 DOI: 10.3390/cells11152347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiac fibrosis is a common pathophysiologic process associated with numerous cardiovascular diseases, resulting in cardiac dysfunction. Cardiac fibroblasts (CFs) play an important role in the production of the extracellular matrix and are the essential cell type in a quiescent state in a healthy heart. In response to diverse pathologic stress and environmental stress, resident CFs convert to activated fibroblasts, referred to as myofibroblasts, which produce more extracellular matrix, contributing to cardiac fibrosis. Although multiple molecular mechanisms are implicated in CFs activation and cardiac fibrosis, there is increasing evidence that epigenetic regulation plays a key role in this process. Epigenetics is a rapidly growing field in biology, and provides a modulated link between pathological stimuli and gene expression profiles, ultimately leading to corresponding pathological changes. Epigenetic modifications are mainly composed of three main categories: DNA methylation, histone modifications, and non-coding RNAs. This review focuses on recent advances regarding epigenetic regulation in cardiac fibrosis and highlights the effects of epigenetic modifications on CFs activation. Finally, we provide some perspectives and prospects for the study of epigenetic modifications and cardiac fibrosis.
Collapse
Affiliation(s)
- Jingrong Shao
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
| | - Jiao Liu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China;
| | - Shengkai Zuo
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
- Correspondence:
| |
Collapse
|
22
|
Han Y, Nie J, Wang DW, Ni L. Mechanism of histone deacetylases in cardiac hypertrophy and its therapeutic inhibitors. Front Cardiovasc Med 2022; 9:931475. [PMID: 35958418 PMCID: PMC9360326 DOI: 10.3389/fcvm.2022.931475] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Cardiac hypertrophy is a key process in cardiac remodeling development, leading to ventricle enlargement and heart failure. Recently, studies show the complicated relation between cardiac hypertrophy and epigenetic modification. Post-translational modification of histone is an essential part of epigenetic modification, which is relevant to multiple cardiac diseases, especially in cardiac hypertrophy. There is a group of enzymes related in the balance of histone acetylation/deacetylation, which is defined as histone acetyltransferase (HAT) and histone deacetylase (HDAC). In this review, we introduce an important enzyme family HDAC, a key regulator in histone deacetylation. In cardiac hypertrophy HDAC I downregulates the anti-hypertrophy gene expression, including Kruppel-like factor 4 (Klf4) and inositol-5 phosphatase f (Inpp5f), and promote the development of cardiac hypertrophy. On the contrary, HDAC II binds to myocyte-specific enhancer factor 2 (MEF2), inhibit the assemble ability to HAT and protect against cardiac hypertrophy. Under adverse stimuli such as pressure overload and calcineurin stimulation, the HDAC II transfer to cytoplasm, and MEF2 can bind to nuclear factor of activated T cells (NFAT) or GATA binding protein 4 (GATA4), mediating inappropriate gene expression. HDAC III, also known as SIRTs, can interact not only to transcription factors, but also exist interaction mechanisms to other HDACs, such as HDAC IIa. We also present the latest progress of HDAC inhibitors (HDACi), as a potential treatment target in cardiac hypertrophy.
Collapse
Affiliation(s)
- Yu Han
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- *Correspondence: Dao Wen Wang,
| | - Li Ni
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Li Ni,
| |
Collapse
|
23
|
OTUD7B (Cezanne) ameliorates fibrosis after myocardial infarction via FAK-ERK/P38 MAPK signaling pathway. Arch Biochem Biophys 2022; 724:109266. [PMID: 35523269 DOI: 10.1016/j.abb.2022.109266] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022]
Abstract
Fibrosis is one of the crucial reasons for cardiac dysfunction after myocardial infarction (MI). Understanding the underlying molecular mechanism that causes fibrosis is crucial to developing effective therapy. Recently, OUT domain-containing 7B (OTUD7B), also called Cezanne, a multifunctional deubiquitylate, has been found to play various roles in cancer and vascular diseases and control many important signaling pathways, including inflammation, proliferation, and so on. However, whether OTUD7B plays a role in fibrosis caused by MI remains unclear. Our study aimed to explore the function of OTUD7B in cardiac fibrosis and investigate the underlying mechanism. We found that the expression of OTUD7B was downregulated in the MI rat model and cultured cardiac fibroblasts (CFs) in hypoxic conditions and after TGF-β1 treatment. In vitro, silencing OTUD7B using small interfering RNA (siRNA) increased α-SMA (smooth muscle actin α) and collagen Ⅰ levels in CFs, whereas the overexpression of OTUD7B using adenovirus decreased their expression. Mechanistically, OTUD7B could regulate the phosphorylation of focal adhesion kinase (FAK), a non-receptor tyrosine kinase that has been proved to act as a potential mediator of fibrosis, and ERK/P38 MAPK was involved in this regulation process. In vitro, overexpression of OTUD7B downregulated the phosphorylation level of FAK and then inhibited ERK/P38 phosphorylation, thus leading to decreased α-SMA and collagen Ⅰ expressions, while OTUD7B knockdown showed an opposite result. These findings suggest that OTUD7B could become a potentially effective therapeutic strategy against fibrosis after MI.
Collapse
|
24
|
Zhang Y, Zhang R, Lu L, Zhou N, Lv X, Wang X, Feng Z. Knockdown of lectin-like oxidized low-density lipoprotein-1 ameliorates alcoholic cardiomyopathy via inactivating the p38 mitogen-activated protein kinase pathway. Bioengineered 2022; 13:8926-8936. [PMID: 35333694 PMCID: PMC9161863 DOI: 10.1080/21655979.2022.2056814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
LOX-1 triggers myocardial fibrosis, but its roles and mechanisms in alcoholic cardiomyopathy and the involvement of the downstream signaling pathways had not been fully reported. We planned to explore how LOX-1 facilitated myocardial fibrosis in alcoholic cardiomyopathy. The in vitro and in vivo alcoholic cardiomyopathy model was established by alcohol treatment to rats' cardiac fibroblasts and rats, respectively. Masson staining was conducted to observe the collagen deposition and the IHC assay was executed to evaluate the contents of collagen I and III in vitro and in vivo. The cardiac tissues were also observed under TEM and the cardiac function of rats was evaluated using UCG. The expression levels of LOX-1 and P38MAPK in cardiac fibroblasts and tissues at both mRNA and protein levels were analyzed by RT-qPCR and western blot, respectively. Alcohol treatment could trigger collagen deposition, cell hypertrophy, fibrotic changes and increased the expression levels of LOX-1 and P38MAPK both in vivo and in vitro. It also deteriorated the cardiac function of rats in vivo. Overexpression of LOX-1 in vitro could aggravate the fibrotic changes while knockdown of LOX-1 ameliorated the fibrotic effects of alcohol treatment both in vitro and in vivo such as reduction of collagen deposition, relief of cell hypertrophy and inactivation of the P38MAPK signaling pathway. We concluded that knockdown of LOX-1 exerted anti-fibrotic effects via inhibiting P38MAPK signaling in alcoholic cardiomyopathy both in vitro and in vivo. Our findings highlighted that LOX-1 could become a potential therapeutic target in the treatment of alcoholic cardiomyopathy.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of cardiovascular medicine, Ninth Hospital of Xi'an, Xi'an City, Shanxi Province, China.,Department of cardiovascular medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an City, Shanxi Province, China
| | - Ruiqi Zhang
- Department of cardiovascular medicine, Ninth Hospital of Xi'an, Xi'an City, Shanxi Province, China
| | - Lan Lu
- Department of cardiovascular medicine, Ninth Hospital of Xi'an, Xi'an City, Shanxi Province, China
| | - Na Zhou
- Department of cardiovascular medicine, Ninth Hospital of Xi'an, Xi'an City, Shanxi Province, China
| | - Xiaoyan Lv
- Department of cardiovascular medicine, Ninth Hospital of Xi'an, Xi'an City, Shanxi Province, China
| | - Xin Wang
- Department of cardiovascular medicine, Ninth Hospital of Xi'an, Xi'an City, Shanxi Province, China
| | - Zhanbin Feng
- Department of cardiovascular medicine, Ninth Hospital of Xi'an, Xi'an City, Shanxi Province, China
| |
Collapse
|
25
|
Peroxiredoxin-5 Knockdown Accelerates Pressure Overload-Induced Cardiac Hypertrophy in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5067544. [PMID: 35132351 PMCID: PMC8817848 DOI: 10.1155/2022/5067544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022]
Abstract
A recent study showed that peroxiredoxins (Prxs) play an important role in the development of pathological cardiac hypertrophy. However, the involvement of Prx5 in cardiac hypertrophy remains unclear. Therefore, this study is aimed at investigating the role and mechanisms of Prx5 in pathological cardiac hypertrophy and dysfunction. Transverse aortic constriction (TAC) surgery was performed to establish a pressure overload-induced cardiac hypertrophy model. In this study, we found that Prx5 expression was upregulated in hypertrophic hearts and cardiomyocytes. In addition, Prx5 knockdown accelerated pressure overload-induced cardiac hypertrophy and dysfunction in mice by activating oxidative stress and cardiomyocyte apoptosis. Importantly, heart deterioration caused by Prx5 knockdown was related to mitogen-activated protein kinase (MAPK) pathway activation. These findings suggest that Prx5 could be a novel target for treating cardiac hypertrophy and heart failure.
Collapse
|
26
|
Hdac8 Inhibitor Alleviates Transverse Aortic Constriction-Induced Heart Failure in Mice by Downregulating Ace1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6227330. [PMID: 35126818 PMCID: PMC8813277 DOI: 10.1155/2022/6227330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022]
Abstract
Background Heart failure is characterized by activation of the renin-angiotensin-aldosterone system, which is involved in the regulation of cardiac hypertrophy and hypertension. Recently, we reported that Hdac8 inhibition alleviates isoproterenol-induced and angiotensin II-induced cardiac hypertrophy or hypertension in mice. Here, the effect and regulatory mechanisms of the Hdac8 selective inhibitor PCI34051 on pressure overload-induced heart failure were examined. Methods and Results At week 6 posttransverse aortic constriction (TAC), mice were administered with PCI34051 (3, 10, or 30 mg/kg bodyweight/day) for 2 weeks. The therapeutic effects of PCI34051 on TAC-induced cardiac and lung hypertrophy were determined by examining the heart weight-to-bodyweight and lung weight-to-bodyweight ratios and the cross-sectional cardiomyocyte area. Echocardiography analysis revealed that PCI34051 mitigated TAC-induced decreased ejection fraction and fractional shortening. Additionally, the expression of Hdac8 was upregulated in the cardiac and pulmonary tissues of TAC mice. The expression levels of Ace1 and Agtr1 were upregulated, whereas those of Ace2 and Agtr2 were downregulated in TAC mice. PCI34051 treatment or Hdac8 knockdown alleviated inflammation as evidenced by Rela downregulation and Nfkbia upregulation in mice, as well as in cardiomyocytes, but not in cardiac fibroblasts. Hdac8 overexpression-induced Rela pathway activation was downregulated in Ace1 knockdown cells. Picrosirius red staining, real-time polymerase chain reaction, and western blotting analyses revealed that PCI34051 alleviated fibrosis and downregulated fibrosis-related genes. Moreover, PCI34051 or Hdac8 knockdown in rat cardiac fibroblasts alleviated cardiac fibrosis through the Tgfb1-Smad2/3 pathway. The results of overexpression and knockdown experiments revealed that Hdac8 and Ace1 promote inflammation and fibrosis. Conclusions Treatment with PCI34051 enhanced cardiac and lung functions in the TAC-induced heart failure mouse model. These data suggest that HDAC8 is a potential novel therapeutic target for heart failure accompanied by pathological lung diseases.
Collapse
|